
Hashing, Load Balancing and Multiple Choice

DRAFT∗

Udi Wieder
VMware Research

udi.wieder@gmail.com

September 19, 2016

Abstract

Many tasks in computer systems could be abstracted as distribut-
ing items into buckets, so that the allocation of items across buckets is
as balanced as possible, and furthermore, given an item’s identifier it
is possible to determine quickly into which bucket it was assigned. A
canonical example is a dictionary data structure, where ‘items’ stands
for key-value pairs and ‘buckets’ for memory locations. Another exam-
ple is a distributed key-value store, where the buckets represent whole
servers. A third example may be a distributed execution engine where
items represent processes and buckets computational devices, and so
on. A common technique in this domain is the use of a hash-function
that maps an item into a relatively short fixed length string. The hash
function is then used in some way to associate the item to its bucket.
The use of a hash function is typically the first step in the solution and
additional algorithmic ideas are required to deal with collisions and
the imbalance of hash values.

In this manuscript we survey some of these techniques. We focus
on multiple choice schemes where items are placed into buckets via
the use of several independent hash functions, and typically an item is
placed at the least loaded bucket at the time of placement. We analyze
the distributions obtained in detail, and show how these ideas could
be used to design basic data structures.

With respect to data structures we focus on dictionaries, presenting
linear probing, cuckoo hashing and many of their variants.

∗feedback: errors, typos and omissions, please send to the author

1

DRAFT CONTENTS

Contents

1 Introduction 3
1.1 The balls-into-bins model . 3
1.2 The Dictionary Data Structure 4

2 Simple Hashing - the One Choice Scheme 5

3 Multiple Choice Schemes 7
3.1 The Greedy[d] process . 8
3.2 The Left[d] Process . 10

3.2.1 A better dictionary . 12
3.3 Notes and Other Generalizations 12

3.3.1 Alternative proof techiques 13
3.3.2 Related processes . 14

4 The Heavily Loaded case 15
4.1 General Placement Processes 16
4.2 Back to Greedy[d] . 27

4.2.1 The Left[d] Scheme . 33
4.2.2 The Weighted Case . 33
4.2.3 Lower Bounds . 35

4.3 The Power of Majorization 37
4.3.1 Greedy[d] with Non-uniform Sampling probability . . 39
4.3.2 The (1 + β) process 41
4.3.3 Graphical Processes 42

4.4 A Lower Bound . 44
4.5 Adaptive Schemes . 45

5 Dictionaries 45
5.1 Cuckoo Hashing . 46

5.1.1 Alternative Proof Approaches 54
5.2 Some Interesting Variations 55
5.3 Generalized Cuckoo Hashing and k-Orientability 59

5.3.1 Space Unitilization . 59
5.3.2 Insertion Algorithms 62

5.4 Linear Probing . 63
5.4.1 Five-wise independent hash functions 67

5.5 Explicit hash functions . 68

2

DRAFT 1 INTRODUCTION

1 Introduction

‘Load Balancing’ is a generic name given to a variety of algorithmic problems
where a set of items need to be partitioned across buckets, so that the
load of each bucket, however defined, is approximately evenly distributed.
Phrased in such general terms, the task of load balancing is one of the
most fundamental and commonly addressed algorithmic challenges. Typical
applications include storage systems where buckets are disks and items files
or blocks, data structures where buckets are memory locations and items are
keys or distributed execution engines where buckets are servers and items
are processes, etc..

This manuscript aims at providing some of the basic algorithmic ideas
that underlie many of the practical and theoretically interesting approaches
for this problem, focusing on multiple choice schemes and their variants. Our
starting point is a balls-into-bins model presented in Section1.1. Through-
out Sections 2,3,4 we examine in detail multiple choice techniques for load
balancing. We then move to data structures in Section 5, presenting cuckoo-
hashing and some of its variants. Finally we discuss the linear probing dic-
tionary, which while not a part of the multiple-choice schema is commonly
used and fast in practice.

1.1 The balls-into-bins model

A common framework for reasoning about load balancing processes is that
of ‘balls’ and ‘bins’ where balls represent the demand (keys, processes, files
etc..) and ‘bins’ represent the supply of resources (table slots, servers, stor-
age units etc..). Throughout this manuscript we use the terms buckets and
bins as well as items and balls interchangably.

In this setting we have m balls that are thrown into n bins, typically
sequentially according to some allocation rule. The goal is to understand
the allocation of balls into bins at the end of the process, usually bounding
the load (=number of balls) in the most loaded bin. In this model balls are
assigned to bins via one or more hash functions. These are functions that
map a ball’s unique i.d. (typically implicit in the model) to the set of bins.
Using a hash function (as opposed to a sample of a bin) is useful in the
common case where a ball’s location needs to be recovered from its i.d..

The Random Hashing Assumption Throughout most of the manuscript
we make the assumption that the hash functions h we use are completely
random. That is, h(ball.id) is a uniformly sampled bin, independent of h(·)

3

DRAFT 1 INTRODUCTION

for all other balls. Another way of saying it is that the family of functions
H from which h is uniformly sampled is all functions from the universe of
bin i.d’s to the set of bins. Further, we ignore the time it takes to compute
h and the space it takes to store it. This assumption allows us to focus on
the probabilistic properties of the allocation while ignoring the details of
specifying an explicit function. In practice however a specific and explicit
hash function has to be implemented, and one has to take into account not
only the probabilistic properties of the hash function but also the space re-
quired to store it and the time required to compute it. One can quickly
observe that a perfectly random hash function is too expensive to imple-
ment in realistic scenarios. A vast body of work is dedicated to removing
this assumption and exploring time/space/randomness trade-offs, often for
specific applications. The starting point of this line of research is the seminal
work of Carter and Wegman [22] on universal hashing. In this manuscript
we typically stick with the random hashing assumptions, but for further
reading see Section 5.5.

1.2 The Dictionary Data Structure

A dictionary is a data structure that stores key,value pairs and supports the
operations of insertion, deletion and lookup. It is one of the oldest and most
widely used data structures already implemented in the 50’s c.f [43, 90].
Numerous implementations exist in essentially all standard libraries. There
are many possible ways to implement dictionaries with different algorithmic
ideas, and we review some of them in Section 5, but as a primer consider the
most basic design called a simple chained hash table. The design employs
a hash function h, that maps the domain of keys to the set [n]. An array
A of length n is allocated. Ideally we would like a key-value pair (k, v) to
be placed in A[h(k)]. This is not attainable since more than one pair may
be mapped to the same index in the array, a phenomena known as hash
collisions. In the simple chaining hash table the issue is resolved by letting
each element of the array be a head pointer of a linked list which connects
all the items mapped to that index of the array.

Under this scheme the running time of the lookup operation is bounded
by the number of items mapped to each index of the array. This implemen-
tation falls neatly within the balls-into-bins model and is the topic of the
next section.

4

DRAFT 2 SIMPLE HASHING - THE ONE CHOICE SCHEME

2 Simple Hashing - the One Choice Scheme

In this section we assume each of the m balls is mapped uniformly and
independently into one of n bins. The question we ask is: How many balls
will there be in the heaviest loaded bin? The name one choice scheme refers
to the fact that only a single bin is sampled per ball. If the sample is done via
a hash function this models a simple chained hash table and so the maximal
load bounds the worst case running time of the lookup operation.

We denote by Li(m) the number of balls mapped to the i’th bin af-
ter m balls had been placed. Our object of interest is therefore L(m) :=
maxi Li(m). We also denote Gap(m) := L(m)−m/n.

Let Xj
i be the indicator that the i’th ball was placed in the j’th bin, so

Pr[Xj
i = 1] = 1/n and Lj(m) =

∑
i∈[m]X

j
i . We see that the variable Lj(m)

has the binomial distribution B(m, 1
n), so we can make use of standard

bounds on the tails of the Binomial distribution. The following version of
Chernoff’s theorem is taken from [78].

Theorem 2.1. Let X1, X2, . . . , Xm be mutually independnet variables such
that, for 1 ≤ i ≤ m, Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi, where
0 < pi < 1. Then, for X =

∑
Xi and µ = E[X] =

∑
pi and any δ > 0.

Pr[X > (1 + δ)µ] <

[
eδ

(1 + δ)(1+δ)

]µ
.

We define δ(m) to be the smallest number such that

Pr[Lj >
m
n + δ(m)] < 1/n2.

By the union bound

Pr

[
L(m) = max

j
Lj >

m

n
+ δ(m)

]
<

1

n

In other words, with probability ≥ 1 − 1/n, δ(m) ≥ Gap(m). A simple
calculation reveals that δ(n) ≤ O

(
lnn

ln lnn

)
and that if m > n lnn then

δ(m) ≤ O

(√
m lnn

n

)

In the following we prove tighter bounds by taking a more careful look
at the tail of the Binomial distribution.

5

DRAFT 2 SIMPLE HASHING - THE ONE CHOICE SCHEME

Lemma 2.2. Let kα := α lnn/ ln lnn and let X = |{i : Li(n) ≥ kα}|, i.e.,
X counts the number of bins with at least kα balls after n balls had been
thrown. Then,

lim
n→∞

E[X] =

{
0 if α > 1

∞ if 0 < α < 1

By Markov’s inequality Pr[X ≥ 1] ≤ E[X] and since X is a natural
number, Lemma 2.2 implies the following upper-bound on the load:

Theorem 2.3. If α > 1

Pr[L(n) < kα] = Pr[X = 0] ≥ 1− o(1)

Proof of Lemma 2.2. Let Xi be the random variable indicating whether
Li(n) ≥ kα and let X :=

∑
Xi. Clearly,

E[Xi] = Pr[Li ≥ kα] = Pr[B(n, 1/n) ≥ kα].

Here we use the notation B(n, p) to denote the Binomial distribution, and
with some abuse of notation also a random variable distributed according
to it. We need the following lemma.

Lemma 2.4. For all h ≥ 1

Pr
[
B(n, 1

n) ≥ h+ 1
]

= (1 +O(1
h)) Pr

[
B(n, 1

n) = h+ 1
]

Proof. For ease of notation define b(k) := Pr[B(n, 1/n) = k]. Observe that
for all k ≥ h+ 1 :

b(k)

b(k + 1)
=

(n− k)(1/n)

(k + 1)(1− 1/n)
≤ 1

k
:= λ

We have: ∑
k≥h+1

b(k) ≤ b(h+ 1)
∑

λi

Now
∑
λi = 1

1−λ = k
k−1 = 1 + 1

k−1 ≤ 1 + 1
h and the claim follows.

We continue the proof of Lemma 2.2. By Lemma 2.4 we have

E[X] = nPr[B(n, 1
n) ≥ kα] = n(1 + o(1))b(kα)

= n(1 + o(1))

(
n

kα

)(
1

n

)kα (
1− 1

n

)n−kα

6

DRAFT 3 MULTIPLE CHOICE SCHEMES

We recall that
(
n
k

)
≤
(
en
k

)k
and that 1 + x < ex and compute

≤ n(1 + o(1))

(
e

kα

)kα
≤ exp(lnn(1− α+ o(1)))

which has a limit of 0 when α > 1. If α < 1 a similar calculation, using the

fact that
(
n
k

)
≥
(
n
k

)k
reveals the limit to be ∞.

Theorem 2.3 is tight, it is possible to show that if α < 1, then Pr[L(n) <
kα] ≤ o(1). This does not follow directly from Lemma 2.2, but rather
requires an additional bound on the second moment of L(n).

Notes Theorem 2.3 and its analysis are taken from [93]. There they show
a slightly tighter bound with kα = logn

log logn(1 + α log logn
log log logn). They also show

upper and lower bounds for a larger range of m. All the upper bounds
use the first moment method as demonstarted above. The second moment
method is needed for the matching lower bound. A different way to obtain
the lower bound for the m = n case is via Poisson approximation, see for
instance [75] §5.4. Poisson approximation is a particularly effective tool
when m < n.

3 Multiple Choice Schemes

In this section we investigate an interesting allocation process that from an
implementational point of view is only a slight modification of the one choice
scheme, yet it produces a dramatically more balanced allocation. As before,
we assume that the balls are placed sequentially. The twist is that instead of
sampling a single bin, whenever a ball u is placed we sample uniformly and
independently d bins b1(u), . . . , bd(u). Ball u is placed in the least loaded of
these at the time of placement. For concreteness lets assume that ties are
broken randomly. This allocation process is known as Greedy[d] or as the
d-choice scheme. Clearly when d = 1 Greedy[d] is simply the ‘one-choice
scheme’ as described before. While from an algorithmic point of view, the
change in the allocation process may seem minor, surprisingly, it produces
a dramatic improvement in the balance of laod whenever d > 1.

From a techincal point view, the proof of Theorem 2.3 relies on the fact
that the placement of balls are mutually independent. This does not hold
once d > 1; the placement of a ball depends not only on its independent

7

DRAFT 3 MULTIPLE CHOICE SCHEMES

random choices of bins but also on the placement of all balls that were placed
before it.

We start with the most basic case where the number of balls m is the
same as the number of bins n. This proof was first given in [9] and was also
covered in an excellent survey [74]. We provide the basics and move on to
newer results.

3.1 The Greedy[d] process

In this section we prove the following:

Theorem 3.1. After n balls are placed sequentially into n bins using Greedy[d]
with d > 1, it holds that Pr[L(n) ≥ ln lnn

ln d +O(1)] ≤ o(1/n)

The proof we show is by induction. It is tempting to attempt an in-
duction on n, but that is not the parameter of the induction. Denote by
νi(t) the number of bins with load at least i after t balls are thrown. We
write νi for νi(n). Theorem 3.1 states that with high probability νk = 0, for
k = ln lnn

ln d + O(1). We will bound νi with the induction being on i. Note
that νi(t) is non-decreasing in t so it is enough to bound only νi(n), that
is, the load at the end of the process. The bounds are probabilist, so one
of the technical challenges is to carry the error probability throughout the
induction.

Since the total number of balls is n, for every j > 0 there could be at
most n/j bins with j balls or more. This provides the base case for the
induction. Fix some j:

Pr

[
νj ≤

n

j

]
= 1 (1)

The bound on νi is derived in a somewhat roundabout way. Instead of
counting bins with load i we count balls which are placed in bins of load at
least i. To formalize the idea we need to set some notation. For t = 1 . . . n,
the bin in which the t’th ball is placed is denoted by b(t). The height of
the t’th ball, denoted by h(t), is the number of balls in b(t) at the time of
placement plus one. So for instance, the height of the first ball is always 1,
and L(n) = maxt h(t). Denote by µi(t) the number of balls of height at least
i immeadeatly after the t’th ball was placed (we write µi for µi(n)).Now,
every bin of load i must have a ball of height i, therefore:

νi(t) ≤ µi(t)

8

DRAFT 3 MULTIPLE CHOICE SCHEMES

Let βi be some upper bound, shown (inductively) on νi. Now, consider
some ball t. For ball t to be at height ≥ i + 1, it must be that the d bins
it sampled all had load ≥ i. There are at most βi such bins at time n and
therefore at most βi such bins at any previous time as well. So,

Pr[h(t) ≥ i+ 1 | νi ≤ βi] ≤
βdi
nd

Notice that µi+1 is the sum of n of these variables so linearity of expectation
implies

E[µi+1 | νi ≤ βi] ≤
∑

Pr[h(t) ≥ i+ 1 | νi ≤ βi] ≤
βdi
nd−1

(2)

Now we can state explicitly the values of βi. As implied by (1), we set

β4 = n/4, and we set βi+1 =
2βdi
nd−1 . Note that E[µi+1|νi ≤ βi] ≤ βi+1/2. We

want to show that νi is bounded by βi with high probablity. The analysis
is split to two. First, as long as βi is not too small, concentration bounds
drive the induction. When βi is small a more brute force approach suffices.

The following Lemma establishes the breaking point between the two
cases.

Lemma 3.2. Let i∗ be the largest value of i such that βi ≥ 6 lnn. Then,
i∗ = ln lnn/ ln d+O(1).

Proof. We show by induction that

βi+4 =
n

22di−
∑i−1
j=0 d

j

We have defined β4 = n/4, so this holds for i = 0. By definition β(i+1)+4 =
2βdi+4

nd−1 which by the inductive hypothesis equals

= 2

(
n

22di−
∑i−1
j=0 d

j

)d
/nd−1 =

n

22di+1−
∑i
j=0 d

j

This implies βi ≤ n/2d
i−4

and the claim follows.

Lemma 3.3. For i < i∗, Pr[νi ≥ βi] ≤ i
n2 .

Proof. Since the random choices of balls are independent of one another, it
follows that

Pr[µi+1 > βi+1 | νi ≤ βi] ≤ Pr[B(n,
βdi
nd

) > βi+1]

9

DRAFT 3 MULTIPLE CHOICE SCHEMES

Chernoff Bound implies this is smaller than 1/n2 whenever i ≤ i∗. Now we
have by induction:

Pr[νi+1 ≥ βi+1] ≤ Pr[µi+1 ≥ βi+1]

≤ Pr[µi+1 > βi+1 | νi ≤ βi] + Pr[νi > βi]

≤ 1

n2
+

i

n2
=
i+ 1

n2

All that is required to complete the proof of Theorem 3.1 is to handle the
case i > i∗. We have already established that w.h.p νi∗ ≤ 6 log n. In that
case, the probability a bin with such a load is assigned an additional ball is

at most
(

6 logn
n

)2
. Since the total number of balls is n, the expected total

number of additional balls assigned to such a bin is bounded by (6 logn)2

n and
is O(1) with probability o(1/n).

We note that the same proof could be extended to the case m = cn for
some c ≥ 1. The only difference is in Equation(1) which is now

Pr

[
νj+c ≤

cn

j + c

]
= 1

and Theorem 3.1 states that Pr[L(cn) ≥ ln lnn
ln d + c + O(1)] ≤ o(1/n). This

bounds becomes weaker as c gets larger. We will see in Section 4.2 a better
way of dealing with that case.

A lower bound Theorem 3.1 is tight in that with high probability the
maximal load is at least log log n/ log d − O(1). A more general statement
is presented in Section 4.2.3. The general idea is to prove a lower bound
inductively in a way much similar to the way the upper bound was proven
above.

3.2 The Left[d] Process

Stepping back, the layered induction approach relies on two statements.
The first is a base case for the induction, as manifested in (1). Note that
Equation (1) is robust, it only relies on the assumption that m = n and
does not depend on the specific allocation rule. The second requirement
is some induction step as expressed in Equation (2). It turns out that
different processes may imply other induction steps that lead to different

10

DRAFT 3 MULTIPLE CHOICE SCHEMES

bounds. Vöcking [103] suggested a slightly different process named Left[d]
and surprisingly showed it has better bounds. The analysis we show is taken
from [77].

In this model the n bins are partitioned into d sets S1, ..., Sd, each of
size n/d. We assume for simplicity that d divides n. The allocation process
places the balls sequentially one by one. Each time step it samples d bins,
one bin uniformly and independently from each set. The ball is placed in
the least loaded of the d bins sampled. The interesting twist is in the way
ties are broken. If multiple bins have minimal load the ball is placed in the
bin which belongs to the set with minimal index. It is convenient to think
of the sets as placed linearly, so S1 is the leftmost, to its right is S2 and so
on. Now the tie breaking rule could be phrased as placing the ball in the
bin which is leftmost of of the tied bins; hence the name of the scheme.

Theorem 3.4. After n balls are placed sequentially into n bins using the
d-choice scheme with d > 1, it holds that Pr[L(n) ≥ log logn

d lnφd
+O(1)] ≤ o(1/n)

where φd is some constant that depends only on d and is always in (1.6, 2).

Define Xjd+k to be the number of bins from Sk with load at least j, and
set xi = Xi/n. For a ball to be at height j in set k it has to sample a bin of
height at most j − 1 from S1, . . . , Sk−1 and a bin of height at most j from
sets Sk, Sk+1, . . . , Sd. A moment’s thought reveals the following recursive
relation which is the analog of Equation (2):

E[xi | x<i] ≤ dd
i−1∏
j=i−d

xj (3)

As before this suggests choosing the βi that bound xi such that βi =
2dd

∏i−1
j=i−d βj . Simlilary we need to set the base case. As is the case for

Equation (1), since there are in total n balls, there are at most n/4 bins of
load at most n/4, so with probability 1,∑

i∈[d]

x4d+i ≤
1

4
(4)

Now consider the bound implied by (3) on the expected value of x5d+i.
Equation (4) implies it is maximized when the weight of each x4d+i = 1/4d.
So, for each i ∈ [d]

E[x5d+i] ≤ dd
(

1

4d

)d
≤
(

1

4

)d
11

DRAFT 3 MULTIPLE CHOICE SCHEMES

So naturaly, for i ∈ [d] we set β5d+i = 2
(

1
4

)d
.

From this point on the proof continues exactly as before, with Chernoff
bound implying the accumulated error is small, as long as βi ≥ 6 logn

n . The

bound for the case βi <
6 logn
n is identical to that of Theorem 3.1.

What remains is to understand how fast do the βi’s decrease. Surpris-
ingly, the rucursive equation of (3) decreases faster than (2). The general-
ized Fibonacci number Fd(k) is defined by setting Fd(k) = 0 for k ≤ 0, and
Fd(1) = 1. For k > 1, Fd(k) =

∑d
i=1 Fd(k − i). A simple induction implies

that:

Lemma 3.5.
βi ≤ (4d)−Fd(i−6d)+1

Let νi denote the fraction of bins with load at least i in the system.
Then, with high probability:

νi =

d∑
j=1

xdi+j ≤ d(4d)−Fd(di−6d)+1

so the decrease is exponential in Fd(d · i). Define φd = limk→∞
k
√
Fd(k). It

is well known that for every d ≥ 2 the limit φd exists and is in (1.6, 2), c.f.
[40]. This means that the i∗ for which we need to switch the analysis to a
union bound is at ln lnn

d lnφd
+O(1) as is stipulated by Theorem 3.4.

3.2.1 A better dictionary

Multiple choice schemes naturally extend the idea of a simple chained hash
table as described in section 1.2. Using multiple hash functions would
shorten the length of the chains and thus reduce the worse case lookup
time. This approach is often called d-way chaining. Alternately, a fixed
number of memory slots could be allocated in each bucket and using mul-
tiple hash function would decrease the number of items that can not be
inserted becasue all slots are full. In this case the difference between Left[d]
and Greedy[d] could be significant. See for instance [19].

3.3 Notes and Other Generalizations

A proof of Theorem 3.1 for the case d = 2 first appeared in a slightly different
form in [57]. The general version and the proof we bring here are from [9].
The Left[d] scheme was shown in [103], with a different proof technique. The
proof we show was taken from [77].

12

DRAFT 3 MULTIPLE CHOICE SCHEMES

3.3.1 Alternative proof techiques

The inductive proof technique which we used above is not the only way to
approach Greedy[d] and its variants. A powerful alternative is to explicitly
track the combinatoric structures which underlie the process. Here is a rough
sketch of the approach. Consider a labeled graph with n nodes and m edges.
The nodes represent the n bins. The m edges represent the balls; an edge
representing ball u connects the two nodes which represent u’s two random
bin choices in Greedy[2]. The main idea is to show connections between
the load obtained by Greedy[2] (or some vairant of it) and combinatorial
properties of this random graph. Consider for instance a ball u and its
connected component in the graph Cu. If u is of height ` its two random
bins were of height at least ` − 1 when u was placed. Track the edges
corresponding to the two balls at height ` − 1 in these bins and continue.
All the edges discovered this way belong to Cu and the conclusion is that
either Cu is large (containing roughly 2` nodes) or is dense with many cycles.
A direct combinatorial proof aims at showing that this is unlikely for large
enough ` and thus a bound on ` is obtained. The sketch above is quite
general and could be used in many ways. In fact, the same general approach
is used to prove bounds on cuckoo hashing, which we will see next section.
There the graph is called the ‘cuckoo graph’. There we will see that if
m < n/3 it is unlikely that Cu is large, and this already provides quick
and loose bound of O(log log n). The advantage of this approach is that
tracking the combinatorial structures explicitly is useful when considering
explicit hash functions. See for instance [94] and [27]. The same high-level
approach but with a more careful analysis is often referred as the witness
tree approach and can yield tight results. The proof of Theorem 3.4 in [103]
uses this approach. It is especially useful when considering dynamic models
which include ball removals. Examples and references could be found in the
survey [74].

A different proof technique uses differential equations and fluid limit the-
orems. The idea is to view the system as growing to infinity and thus the
affect of each ball placement becomes infinitesimal and the process becomes
continuous. The continuous process could be described using differential
equations and analytically solved. Typically the differential equations re-
semble the recursive relations used in the inductive proof technique which
was used here. The main advantages of this techinique are its adaptability
to generalizations especially around queuing theory, and its accuracy in pro-
viding estimates of the fraction of bins with intermediate load levels. Again,
see the survey [74] for many references and examples.

13

DRAFT 3 MULTIPLE CHOICE SCHEMES

3.3.2 Related processes

Many variations of the basic process Greedy[d] were suggested, typically with
the goal of capturing a more realistic model of some algorithm or system.
We sketch a few.

In [10] ‘chains’ of length ` are placed. That is, each placement operation
entails placing ` balls across ` consecutive bins. There are d ≥ 2 potential
places for the head of the chain. The chain is placed in the location that
minimized the load of the most loaded bin across the ` bins that hold the
chain. It is shown that if m chains of length ` are placed and m · ` = O(n)
then with high probability the maximum load is (ln lnm)/ ln d+O(1).

In [58] they consider the following variant of Left[d] . Bins are partitioned
to 2n/d groups of d/2 bins. A ball is placed by sampling two groups, and
assigning the ball to the least loaded bin in the lesser loaded group (breaking
ties to the left). Surprisingly the maximal load remains similar to that of
Theorem 3.4. Both schemes probe the load of d bins, but while in Left[d]
the d bins are random, the partition into groups is implies that only 2
memory probes are random while the rest are likely to reside in teh cache,
and therefore it runs faster in practice.

In [11] bins have different capacities. Capacity affects the probability a
bin is sampled with the probability being proportional to the capacity. The
load of a bin is calculated to be the number of balls assigned to it divided
by its capacity. It is shown that if the number of balls is equal the total
capacity (a requirement analogous to m = n) then the maximal load is
log logn+O(1).

In [73] the d choices of Greedy[d] are not sampled independently, but
rather, only two hash functions h1, h2 are used. For each ball u two d bins
used are (h1(u)+ih2(u)) mod n for i = 0, 1, . . . , d−1. Surprisingly, it shown
that the allocation obtained is very similar to that of standard Greedy[d] ,
not only in terms of the maximal load but also for intermediate values as
well.

In [15] [17] they propose a local search algorithm for placement. In this
scheme the bins are associated with the nodes of a graph. A ball is hashed
to a random bin (node) and then starts a local search around the node until
it finds a local minima where it is permanently placed. The maximal load
is O(log log n) if the graph is constant degree expander.

A separate line of research deals with the case where the balls are not
placed sequentially but rather in parallel. Here every round the yet unplaced
balls interact with a small number bins and after each communication round
a some balls are placed in the bins. The object is to minimize the number

14

DRAFT 4 THE HEAVILY LOADED CASE

of rounds of communication and total number of messages sent. In [68] it
was shown that when m = n a load of 2 could be achieved in log∗ n+O(1)
communication rounds and O(n) messages. They also show the bound is
tight.

4 The Heavily Loaded case

The layered induction proof techniqe which was presented in Section 3.1
is inherently limited to the case m = n, and could easily be extended to
m = O(n). The case m >> n is important and captures typical load bal-
ancing challenges in large sytstems where multiple items are placed per host.
For instance, in a large distributed block storage system, if balls represents
blocks and bins represent hosts, it is reasonable to assume that there are
about a million balls per bin. We refer to this setting as the ‘heavily loaded’
case. Many problems arise when trying to extend the previous inductive
proof to the heavily loaded case. For instance, how can we carry the error
of Lemma 3.3 across an arbitrarily large number of balls. Even more ba-
sically, both the inductive base case (1) and the inductive step (2) rely on
the number of balls being linear in the number of bins. A breakthrough was
achieved by Berenbrink et al. in [12]. Recall that L(m) measures the maxi-
mal number of balls assigned to any bin after m balls had been placed, and
that Gap(m) := L(m)−m/n measures the difference between the maximum
and the average load.

Theorem 4.1. For every c > 0 there is a γ = γ(c) so that for any natural
m, after m balls are placed with Greedy[d]

Pr

[
Gap(m) ≥ log log n

log d
+ γ

]
≤ n−c

Contrast this with the one choice case in which Gap(m) diverges with
the number of balls.

At a high level the approach taken in [12] is the following: first it is shown
that for any m, the distribution of Gap(m) is close to the distribution of
Gap(m′) where m′ = poly(n). This is essentially a bound on the mixing time
of the underlying Markov chain. The second step is to extend the inductive
technique of Theorem 3.1 to the case of m = poly(n). This turns out to
be a major technical challenge which manipulates four inductive invariants
and uses some computer aided calcualtions. In this survey we follow a much
simpler approach presented in [100], and show a slighlty weaker result:

15

DRAFT 4 THE HEAVILY LOADED CASE

Theorem 4.2. For any m, after m balls are placed using Greedy[d] it holds
that

E[Gap(m)] ≤ log log n

log d
+O(log log log n)

In the following section we build a machinary that handles the heavily
loaded case in a much more general setting, finally proving Theorem 4.2 in
Section 4.2. The mechanism we show is taken largely from [89].

4.1 General Placement Processes

An important property of Greedy[d] is that the probability that a given
bin gets a ball depends only upon the fraction of bins which have a higher
load. Another way to characterize Greedy[d] is via a probability vector
p = (p1, . . . , pn): we order the bins from the most loaded to the least loaded
(ties are broken according to some fixed ordering of the bins) and set p1

to be the probability that the most loaded bin receives the ball, p2 is the
probability that the second bin receives it, and so on. It is easy to see that

in Greedy[d] pi =
(
i
n

)d−(i−1
n

)d
. So for d = 1, pi = 1

n for all i, while if d > 1
then pi > pj for i > j. In other words, when d > 1 the process has a bias
towards the light bins. At a high level, this bias explains the stark difference
between the cases d = 1 and d > 1.

Our approach is to view the process as an n-dimensional version of a
biased random walk on a line: Consider a random walk on the line which
starts at 0 and each step moves either right or left with equal probability.
It is well known that after m steps, the expected distance from 0 is roughly√
m. If however the random walk has a bias towards 0 then the expected

distance from 0 is bounded by some constant independent of m. When
n = 2, the difference between the loads of the two bins is indeed a random
walk on the line: an unbiased one in Greedy[1] and a biased one in Greedy[d]
for d > 1. We reduce the process at hand to a one dimensional process via
a potential function Γ : Rn → R from the set of allocations to the real
numbers such that (i) if Γ is small then the allocation is balanced, and (ii)
the expectation of Γ is bounded by a constant independent of m. The main
advantage of this approach is that it generalizes to more vectors p.

Weighted balls. In practice it is often the case that items have heteroge-
neous sizes. Consider for instance the case of a storage system which places
files (balls) into servers (bins). In this case each file has a different size, and
the load of the server is the total size of files assigned to it. If each ball is
assigned an arbitrary, possibly advarsarial, then no non-trivial bounds are

16

DRAFT 4 THE HEAVILY LOADED CASE

known. Further, some interesting and pathological scenarios are demon-
strated in [13]. In this survey we examine a strochastic model instead. We
assign each ball a weight by independently sampling from a weight distribu-
tion D and define the load of a bin to be the sum of weights of balls assigned
to it. Talwar and Wieder [99] show that in the two choice scheme, if the
weight distribution has a finite variance and is ‘smooth’ in some mild sense,
then Gap(m) is independent of m, the number of balls thrown. However, no
non-trivial upper bounds on the gap for specific distributions were shown
there.

Definition 1. A general placement process is characterized by a probability
vector p and a weight distribution D over R>0. m balls are placed sequen-
tially into n bins, where for each ball v:

1. Bins are sorted by load, where a bin’s load is the sum of weights of
balls asigned to it. An index i ∈ [n] is sampled according to p, that is,
i is sampled with probability pi

2. A weight W is sampled from D and is asigned to v

3. Ball v is placed in the i’th loaded bin

We make the following assumptions on p

pi ≤ pi+1 for i ∈ [n− 1] (5)

For some 1
4 > ε > 0 it holds that

pn
3
≤ 1− 4ε

n
and p 2n

3
≥ 1 + 4ε

n
(6)

The first assumption says that the probability a bin receives a ball is non
increasing with the bin’s load. The second assumption states that the allo-
cation rule strictly prefers the least loaded third of bins over the most loaded
third. Note also that these assumptions imply that

∑
i≥ 3n

4
pi ≥ 1

4 + ε and∑
i≤n

4
pi ≤ 1

4 − ε, a fact that turns out to be useful.

For the distribution D, we first assume that E[W] = 1, where W is
drawn from D. This assumption is without loss of generality, because all
weights could be scaled appropriately and Gap is then scaled by the same
factor. The second assumption we make is that there is a λ > 0 such

17

DRAFT 4 THE HEAVILY LOADED CASE

that the moment generating function M(λ) = E[eλW] < ∞. Essentially
this assumption means that the tail of the distribution decreases at a rate
which is at least exponential. In particular, the Exponential, Geometric and
Normal distributions have this property. Note that

M ′′(z) = E[W 2ezW] ≤
√
E[W 4]E[e2zW].

The above assumption implies that there is an S ≥ 1 such that for every
|z| < λ/2 it holds that M ′′(z) < 2S. Let α = min(ε

6S , λ/2). Ultimately,
α and S are constants that depend only on D and ε. If we have uniform
weights, i.e., D is concentrated on 1, then we can take S = 1, α = ε/6. Let
Gap′(m) denote the difference between the maximal load and the minimal
load. The remainder of this section is dedicated to proving the following
theorem:

Theorem 4.3. Under the assumptions above, for every m,

E[Gap′(m)] ≤ logn
α +O(log(1/αε)

α)

Moreover,

Pr
[
Gap′(m) > 2 logn

α +O(log(1/αε)
α)

]
≤ 1

n

Let us check the bounds the above results give for some simple distribu-
tions.

Example 2. Let D be the distribution that is zero with probability (1− 1
K)

and K with probability 1
K . For this distribution, we can check that M ′′(1

K) is
in O(K), so that we can set α = Θ(εK). This leads to a gap of O(K log n/ε),
which is tight up to constants.

Example 3. Let D be the exponential distribution with parameter 1. Then
M ′′(1/2) is finite. Thus the gap is O(log n/ε). This is tight up to constants.

Moreover, note that the distribution may be different in each time step,
as long as the independence is preserved and the bound on the moment
generating function holds.

Recal, that our approach is to reduce the process at hand to a one
dimensional process via a potential function Γ : Rn → R from the set of
allocations to the real numbers such that (i) if Γ is small then the allocation is
balanced, and (ii) the expectation of Γ is bounded by a constant independent
of m. We do that next.

18

DRAFT 4 THE HEAVILY LOADED CASE

The Underlying Markov Chain: We mark time t, where each time unit
one ball is placed, so at time t, t balls have been placed. Let x(t) be the
vector denoting the load of each bin minus the average load, at time t. So∑
xi(t) = 0. Under this notation, a bin that trails behind the average has

negative load. We assume that x is sorted so that xi ≥ xi+1 for i ∈ [n− 1].
The process defines a Markov chain over the vectors x(t) as follows:

• sample j ∈p [n], i.e. pick j with probability pj .

• sample W ∈ D

• set yi = xi(t) +W − W
n for i = j and yi = xi(t)− W

n for i 6= j

• obtain x(t+ 1) by sorting y

Define the following potential functions

Φ(t) = Φ(x(t)) :=
n∑
i=1

exp(αxi)

Ψ(t) = Ψ(x(t)) :=
n∑
i=1

exp(−αxi)

Γ(t) = Γ(x(t)) := Φ(x(t)) + Ψ(x(t))

Note that Γ(0) = 2n. We show that if Γ(x(t)) ≥ cn for some c > 0 then
E [Γ(x(t+ 1)) | x(t)] ≤ Γ(x(t))(1 − αε

4n). We will use this to show that for
every given t, E[Γ(t)] is bounded.

One may think that Φ would make a more natural choice. Φ however is
barely affected by the load of the bins that are dragged behind the average
(and thus have negative load in the load vector). This results in pathological
vectors x for which Φ can increase in expectation even when it is arbitrarily
large. Another natural choice of a potential funciton is

∑
exp(|αxi|). This

function is similar to Γ. We chose Γ because it allows us to investigate Φ
and Ψ separately.

We start by calculating the expected change of Φ and Ψ individually.
We write Φ instead of Φ(t) when t is clear from context.

Lemma 4.4. For Φ defined as above,

E[Φ(t+ 1)− Φ(t) | x(t)] ≤
n∑
i=1

(
pi(α+ Sα2)− (αn − S

α2

n2)
)
eαxi . (7)

19

DRAFT 4 THE HEAVILY LOADED CASE

Proof. Let ∆i denote the change in Φi = exp(αxi), i.e. ∆i = exp(αyi) −
exp(αxi), where yi = xi + W − W

n with probability pi, and yi = xi − W
n

otherwise. Recall that M(z) := E[exp(zW)]. In the first case, when the ball
is placed in bin i, we use Maclaurin expansion and calculate the expected
change (taken over randomness in W) ∆i:

E[eα(xi+W−Wn)]− eαxi = eαxi(M(α(1− 1
n))− 1)

= eαxi(M(0) +M ′(0)α(1− 1
n) +M ′′(ζ)(α(1− 1

n))2/2− 1)

for some ζ ∈ [0, α(1 − 1
n)]. By the assumption on D and α, M ′′(ζ) ≤ 2S.

Moreover, M(0) = 1 and M ′(0) = E[W] = 1. Thus the above expression
can be bounded from above by

eαxi(α(1− 1
n) + Sα2) (8)

Similarly, in the case that the ball goes to a bin other than i, the expected
value of ∆i is bounded by

(−α
n + S α

2

n2)eαxi (9)

Adding (8) and (9)

E[∆i] ≤ pi(α(1− 1
n)+Sα2)eαxi−(1−pi)(αn−S

α2

n2)eαxi ≤
(
pi(α+ Sα2)− (αn − S

α2

n2)
)
eαxi .

The claim follows.

We can now bound the expected increase Φ.

Corollary 4.5.

E[Φ(t+ 1)− Φ(t) | x(t)] ≤ 2α

n
Φ(t) (10)

Proof. Note that Sα < 1 so (7) implies

E[Φ(t+ 1)− Φ(t) | x(t)] ≤
n∑
i=1

2αpie
αxi .

For every i ∈ [n − 1] we know that pi ≤ pi+1. Let p′ = pi+pi+1

2 . Since
xi ≥ xi+1 we have

p′eαxi + p′eαxi+1 ≥ pieαxi + pi+1e
αxi+1

In other words, for given decreasing xis, and under the constraints that the
pi’s are increasing the expression above is maximized when pi = 1/n for all
i. The claim follows.

20

DRAFT 4 THE HEAVILY LOADED CASE

Similar arguments show that

Lemma 4.6. Let Ψ be defined as above. Then

E[Ψ(t+ 1)−Ψ(t) | x(t)] ≤
n∑
i=1

(
pi(−α+ Sα2) + (αn + S α

2

n2)
)
e−αxi . (11)

Corollary 4.7.

E[Ψ(t+ 1)−Ψ(t) | x(t)] ≤ 2α

n
Ψ(t) (12)

Proof. This follows immediately as pi > 0 and Sα < 1
6 .

So far we showed that Φ and Ψ don’t increase by much on expectation.
Ultimately our goal is to show that if large they are actually expected to
decrease. We start by showing this under the assumption that the allocation
itself x(t) is reasonable balanced. More precisely, if x 3n

4
≤ 0 (so the least

loaded quorter of bins all have load at most average), then Φ decreases in
expectation, and if xn

4
≥ 0, (so the most loaded quorter of bins have load

at least average), then Ψ decreases in expectation.

Lemma 4.8. Let Φ be defined as above. If x 3n
4

(t) ≤ 0, then E[Φ(t +

1) | x(t)] ≤ (1− αε
n)Φ(t) + 1.

Proof. We bound the size of each of the terms in (7) separately. First we
bound from above

∑n
i=1 pi(α+Sα2)eαxi for a fixed Φ(x), for x which is non

increasing with
∑

i xi = 0.

n∑
i=1

pi(α+ Sα2)eαxi ≤
∑
i< 3n

4

pi(α+ Sα2)eαxi +
∑
i≥ 3n

4

pi(α+ Sα2)e0

≤
∑
i< 3n

4

pi(α+ Sα2)eαxi + 1 (13)

since α+ Sα2 ≤ 6ε+ε2

36S ≤ 1 by our assumptions that ε ≤ 1 and S ≥ 1.
Now set yi := eαxi . The first term above is no larger than the maximum

21

DRAFT 4 THE HEAVILY LOADED CASE

value of

(α+ Sα2)
∑
i< 3n

4

piyi

subject to∑
i< 3n

4

yi ≤ Φ

yi−1 ≥ yi ∀ 1 < i < 3n
4 .

Since p is non-decreasing and y is non-increasing, the maximum is achieved
when yi = 4Φ

3n for each i, and is at most (α+ Sα2)(3
4 − ε)

4Φ
3n .

We can now plug this bound in (13), and substituting in (7), the expected
change in Φ is bounded by

E [Φ(t+ 1)− Φ(t) | x(t)] ≤ (α+ Sα2)(
3

4
− ε)4Φ

3n −
(
α

n
− Sα

2

n2

)
Φ + 1

≤ αΦ

n

(
(1 + Sα)(1− 4ε

3
)− 1 + S

α

n

)
+ 1

Assuming Sα ≤ ε/6 we have

≤ α

n
Φ
(
ε
6 −

4ε
3 + ε

6n

)
+ 1

≤ −αε
n

Φ + 1

The claim follows.

A similar bound is shown for Ψ:

Lemma 4.9. Let Ψ be defined as above. If xn
4
(t) ≥ 0, then E[Ψ(t +

1) | x(t)] ≤ (1− αε
n)Ψ(t) + 1.

Proof. We first show an upper bound for
∑n

i=1 pi(−α+Sα2)e−αxi for a fixed
Ψ(x). Recall that x is non increasing and

∑
i xi = 0. Since (−α + Sα2) is

negative, we have

n∑
i=1

pi(−α+ Sα2)e−αxi ≤ (−α+ Sα2)
∑
i≥n

4

pie
−αxi

Now set zi := e−αxi . Under the assumption on xn
4
, the sum

∑
i≥n

4
zi is

at least Ψ− n
4 . Since (−α+Sα2) is negative, to bound the second term, we

22

DRAFT 4 THE HEAVILY LOADED CASE

need to find the minimum value of∑
i≥n

4

pizi

subject to∑
i≥n

4

zi ≥ Ψ− n

4

zi−1 ≥ zi ∀ i > n
4 .

Since both p and z are (weakly) increasing, the minimum is achieved when

zi =
4(Ψ−n

4
)

3n for each i. Using the assumption that
∑

i≥n/4 pi ≥
3
4 + ε we

can bound the expression above by (−α+ Sα2)(3
4 + ε)

4(Ψ−n
4

)

3n . We can now
bound the expected change in Ψ by plugging this bound in (11).

E[Ψ(t+ 1)−Ψ(t) | x(t)] ≤ (−α+ Sα2)(3
4 + ε)

4(Ψ−n
4

)

3n + α
n (1 + S αn)Ψ

= α
n

(
(1 + S αn)Ψ + (−1 + Sα)(3

4 + ε)4Ψ−n
3

)
= α

n

(
(1 + S αn)Ψ + Sα(3

4 + ε)4Ψ−n
3 − (3

4 + ε)4Ψ−n
3

)
≤ αΨ

n

(
1 + S αn + Sα(3

4 + ε)4
3 − (3

4 + ε)4
3

)
+
α

3
(3

4 + ε)

≤ −αε
n

Ψ + 1

where the last inequality follows since ε ≤ 1
4 and Sα ≤ ε

6 .

So far we have shown that if the allocation is more or less balanced,
both Φ and Ψ decrease on expectation. When the allocation is extremely
unbalanced one of these potential function may increase while the other
decreases. The idea of the proof is to show that the decreasing function
dominates the increasing one. The next lemma will be useful in the case that
x 3n

4
> 0. For ease of notation we write ∆Φ to denote Φ(x(t+ 1))−Φ(x(t)).

Lemma 4.10. Suppose that x 3n
4
> 0 and E[∆Φ|x(t)] ≥ −αε

n Φ. Then either

Φ < ε
4Ψ or Γ < cn for some c = poly(1

ε).

The lemma shows that if Φ does not decrease enough by expectation, and
Γ is large, then Φ is much small than Ψ. This would be usefule because we
know that under the lemma’s assumtpions Ψ does decrease on expectation.

23

DRAFT 4 THE HEAVILY LOADED CASE

Proof. First, (7) shows the expected increase in Φ is at most∑
i

(pi(α+ Sα2)− α
n + S α

2

n2)eαxi

≤
∑
i≤n/3

(pi(α+ Sα2)− α
n + S α

2

n2)eαxi + (α+ Sα2)
∑
i>n/3

pie
αxi

Recalling that for i ≤ n/3, pi ≤ 1−4ε
n and that Sα < ε, the first term is at

most −2αε
n Φ≤n/3. For the second term we again use the fact that for given

Φ,
∑
pie

αxi is maximized when p is uniform, and bound it by 2α
n Φ>n/3. We

have:

E[∆Φ|x(t)] ≤ −2αε

n
Φ≤n/3 +

2α

n
Φ>n/3

≤ −2αε

n
Φ +

3α

n
Φ>n/3

Thus E[∆Φ|x(t)] ≥ −αε
n Φ implies that 3α

n Φ>n
3
≥ αε

n Φ. Or said differently:

Φ ≤ 3

ε
Φ>n

3
(14)

Let B =
∑

i max(0, xi) = 1
2 ||x||1. Note that Φ≥n

3
is upper bounded by

2n
3 e

3αB
n . Thus

Φ ≤ 3

ε
Φ>n

3
≤ 2n

ε
e

3αB
n . (15)

On the other hand, x 3n
4
> 0 implies that Ψ ≥ n

4 e
4αB
n .

If Φ < ε
4Ψ, we are already done. Otherwise,

2n

ε
e

3αB
n ≥ Φ ≥ ε

4
Ψ ≥ εn

16
e

4αB
n

so that e
αB
n ≤ 32

ε2
. It follows that

Γ ≤ 5
εΦ ≤

40n
ε2

(32
ε)3 ≤ cn.

Similarly,

Lemma 4.11. Suppose that xn
4
< 0 and E[∆Ψ|x(t)] ≥ −αε

4nΨ. Then either

Ψ < ε
4Φ or Γ < cn for some c = poly(1

ε).

24

DRAFT 4 THE HEAVILY LOADED CASE

Proof. First observe that for any i > 2n
3 , pi >

1+ε
n so that pi(−α + Sα2) +

(αn +S α
2

n2) ≤ −αε
2n . Since pi ≥ 0 it holds that pi(−α+Sα2)+(αn +S α

2

n2) ≤ 2α
n

for every i. Using the upper bound from (11) we get

E[∆Ψ | x(t)] ≤ −αε
2n

Ψ> 2n
3

+
2α

n
Ψ≤ 2n

3

= −αε
2n

Ψ +
4α+ αε

2n
Ψ≤ 2n

3

≤ −αε
2n

Ψ +
3α

n
Ψ≤ 2n

3
.

Thus E[∆Ψ | x(t)] ≥ −αε
4nΨ implies that

3α

n
Ψ≤ 2n

3
≥ αε

4n
Ψ.

Let B =
∑

i max(0, xi) = 1
2 ||x||1. Note that Ψ≤ 2n

3
is upper bounded by

2n
3 e

3αB
n . Thus

Ψ ≤ 12

ε
Ψ≤ 2n

3
≤ 8n

ε
e

3αB
n . (16)

On the other hand, xn
4
< 0 implies that Φ ≥ n

4 e
4αB
n .

If Ψ < ε
4Φ, we are already done. Otherwise,

8n

ε
e

3αB
n ≥ Ψ ≥ ε

4
Φ ≥ nε

16
e

4αB
n

so that e
αB
n ≤ 128

ε2
. It follows that

Γ ≤ 5
εΨ ≤

40n
ε2

(128
ε)3 ≤ cn.

We are now ready to prove the supermartingale-type property of Γ.

Theorem 4.12. Let Γ be as above. Then E[Γ(t+1) | x(t)] ≤ (1− αε
4n)Γ(t)+c,

for a constant c = c(ε) = poly(1
ε).

Proof. The proof proceeds via a case analysis. In case the conditions, xn
4
≥ 0

and x 3n
4
≤ 0 hold, we show both Φ and Ψ decrease in expectation. If one of

these is violated Lemmas 4.10 and 4.11 come to the rescue.

Case 1: xn
4
≥ 0 and x 3n

4
≤ 0. In this case the theorem follows from

Lemmas 4.8 and 4.9.

25

DRAFT 4 THE HEAVILY LOADED CASE

Case 2: xn
4
≥ x 3n

4
> 0. Intuitively, this means that the allocation is

very non symmetric with big holes in the less loaded bins. While Φ may
sometimes grow in expectation, we will show that if that happens, then
the asymmetry implies that Γ is dominated by Ψ which decreases. Thus
the decrease in Ψ offsets the increase in Φ and the expected change in Γ is
negative.

Formally, if E[∆Φ|x] ≤ −αε
4nΦ, Lemma 4.9 implies the result. Otherwise,

by Lemma 4.10 there are two subcases:

Case 2.1: Φ < ε
4Ψ. In this case, using Lemma 4.9 and Corollary 4.5

E[∆Γ|x] = E[∆Φ|x] +E[∆Ψ|x] ≤ 2α

n
Φ− αε

n
Ψ + 1 ≤ −αε

2n
Ψ + 1 ≤ −αε

4n
Γ + 1

Case 2.2: Γ < cn. In this case, Corollaries 4.5 and 4.7 imply that

E[∆Γ|x] ≤ 2α

n
Γ ≤ 2cα.

On the other hand, c− αε
4nΓ ≥ c(1− αε

4) > 2cα.

Case 3: x 3n
4
≤ xn

4
< 0. This case is similar to case 2. If E[∆Ψ|x] ≤ −αε

4nΨ,

Lemma 4.8 implies the result. Otherwise, by Lemma 4.11 there are two
subcases:

Case 3.1: Ψ < ε
4Φ. In this case, using Lemma 4.8 and Corollary 4.7, the

claim follows.

Case 3.2: Γ < cn. This case is the same as case 2.2.

Once we have shown that Γ decreases in expectation when large, we can use
that to bound the expected value of Γ.

Theorem 4.13. For any t ≥ 0, E[Γ(t)] ≤ 4c
αεn.

Proof. We show the claim by induction. For t = 0, it is trivially true. By
Theorem 4.12, we have

E[Γ(t+ 1)] = E[E[Γ(t+ 1) | Γ(t)]]

≤ E[(1− αε

4n
)Γ(t) + c]

≤ 4c

αε
n(1− αε

4n
) + c

≤ 4c

αε
n− c+ c

The claim follows.

26

DRAFT 4 THE HEAVILY LOADED CASE

Finally recall that Gap′(t) denotes the additive gap between the maxi-
mum bin and the minimum bin, i.e. x1(t) − xn(t). We are now ready to
prove Theorem 4.3.:

Note that Γ(t) ≥ eαGap(t). Since eαx is convex:

E[Gap′(t)] ≤ 1
α logE[Γ(t)]

≤ log n/α+ log(4c/αε)/α

= log n/α+O(log(1/αε)/α).

Similarly, Pr[Gap′(t) > 2 log n/α+O(log(1/αε)/α)] ≤ Pr[Γ(t) ≥ nE[Γ(t)]] ≤
1/n.

4.2 Back to Greedy[d]

We are now ready to prove Theorem 4.2. The main idea of the proof is to use
Theorem 4.13 to obtain some bounds on the allocation at time m− n log n,
and then use the standard induction approach similar to Section 3.1 for the
last n log n balls.

We define the normalized load vector x(t) to be an n dimensional vector
where xi(t) is the difference between the load of the i’th bin after tn balls
are thrown and the average t, (so that a load of a bin can be negative
and

∑
xi(t) = 0). This is similar to the definition of load vector in the

previous section, only now it would be useful to count time in epochs of
n balls each. We also assume as before that the vector is sorted so that
x1(t) ≥ x2(t) ≥ ... ≥ xn(t).

The main tool we use is Theorem 4.13 which in our context states that
for every d > 1 there exist positive constants a and b such that for all n and
all t,

E

[∑
i

exp
(
a|xti|

)]
≤ bn. (17)

and in patricular we know that for any t, any c ≥ 0,

Pr[Gap′(t) ≥ c log n

a
] ≤ bn

nc
(18)

We remark that (18) is tight up to constant factors: in Greedy[d] the
lightest bin indeed trails the average by a logarithmic number of balls. The
challenge is therefore to use a different technique to “sharpen” the bound on
the gap between maximum and average. We do this next by showing that

27

DRAFT 4 THE HEAVILY LOADED CASE

if the gap is indeed bounded by log n, then after additional n log n balls are
thrown the gap is reduced to log log n.

The crucial lemma, that we present next, says that if the gap at time t is
L, then after throwing another nL balls, the gap becomes log log n+O(logL)
with probability close to 1. Roughly speaking, our approach is to apply the
lemma twice, first with L = O(log n) where L is bounded by 17. This
reduces the bound to O(log log n). A second application of the lemma with
L = O(log log n) implies Theorem 4.2.

Lemma 4.14. There is a universal constant γ = γ(d) such that the following
holds: for any t, `, L such that 2(d−1) ≤ ` ≤ L ≤ log2 n and Pr[Gap(t) ≥ L] ≤
1
2 ,

Pr

[
Gap(t+ L) ≥ log logn

log d
+ `+ γ

]
≤ Pr[Gap(t) ≥ L] +

bL
3
d−1

exp(a`)
+

1

n2
,

where a, b are the constants from (17).

Intuition: We use the induction based technique, similar to Section 3.1.
For a specific ball to increase the number of balls in a bin from i to i+ 1, it
must be placed in a bin with at least i balls. Under the inductive hypothesis
there are at most βin such bins, so the probability of this happening is at
most βdi . There are a total of L balls placed, so there are (on expectation) at
most nLβdi bins with load at least i+ 1. Roughly speaking this implies that
βi+1 ≈ Lβdi . While the βi’s are a function of time, they are monotonically
increasing and using the final βi value would give us an upper bound on
the probability of increase. Following this recursion for log log n/ log d steps
would shrink β to be below 1/n. The main challenge is to obtain a base case
for the induction. In Section 3.1 the base case is implied by the assumption
that the number of balls is n. Here, the key observation is that (17) provides
us with such a base case, for bins with ` more balls than the average in
x(t+ L). For simplicity, the reader may think of L as O(log n) and ` as
O(log log n). With these parameters (17) implies that the fraction of bins
with load at least ` = O(log log n) (at time t + L) is at most 1

4 logn , so the
β’s shrink in each induction step even though n log n balls are thrown. As
mentioned above, we will use the lemma a second time for L = O(log log n)
and ` = O(log log log n).

Proof of Lemma 4.14. We sample an allocation x(t) and follow the Markov
chain for additional L steps to obtain x(t+ L), in other words, an addi-
tional nL balls are thrown by the Greedy[d] process. For brevity, we will

28

DRAFT 4 THE HEAVILY LOADED CASE

𝐿

𝐿′

𝜈𝑖𝑛

Figure 1: Black balls are in X, nL white balls are thrown to obtain X ′

use X,G,X ′, G′ to denote x(t), Gap(t), x(t+ L), Gap(t+ L) respectively. We
condition on G < L and we prove the bound for G′. Let L′ = log log n+`+γ.
Observe that:

Pr[G′ ≥ L′] ≤ Pr[G′ ≥ L′ | G < L] + Pr[G ≥ L] (19)

It thus suffices to prove that Pr[G′ ≥ L′ | G < L] ≤ bL
3
d−1

exp(a`) + 1
n2 . We do this

using a layered induction similar to the one in Section 3.1.
Let νi be the fraction of bins with normalized load at least i in X ′ (i.e.

containing t+L+ i balls or more), we will define a series of numbers βi such
that νi ≤ βi with high probability. To convert an expectation bound to a
high probability bound, we will use a Chernoff-Hoeffding tail bound as long
as βin is large enough (at least log n). The case for larger i will be handled
separately.

By (17) and along with the assumption Pr[G < L] ≥ 1
2 , Markov’s in-

equality implies that,

Pr

[
ν` ≥ 2L

− 3
d−1 | G < L

]
≤ bL

3
d−1

exp(a`)
. (20)

We set β` = 2L
− 3
d−1 as the base of the layered and set βi+1 = max(2Lβdi , 18 log n/n).

Let i∗ = `+ log log n/ log d+ d+2
d−1 .

Lemma 4.15. βi∗ = 18 log n/n.

29

DRAFT 4 THE HEAVILY LOADED CASE

Proof. Suppose that the truncation does not come into play until i∗. Let

`′ be such that β`′ = (2L)
− 3
d−1 . We first observe that since βi+1 ≤ βi/2 it

holds that `′ ≤ `+ d+2
d−1 . Now, the recurrence

log β`′ = − 3
d−1 log(2L),

log βi+1 = d log βi + log(2L)

solves to log β`′+k = log(2L)(− 3
d−1 · d

k + dk−1
d−1) so that

log βi∗ = log β
`′+

log logn
log d

≤ log(L)(−2 log n)

This is at most −2 log n as log(2L)/(d − 1) ≥ 1 so that βi∗ ≤ 1
n2 which is

smaller than the truncation threshold, contradicting the assumption.

The inductive step is encapsulated in the next lemma. The proof is
an expectation computation, followed by an application of the Chernoff-
Hoeffding bound. Let B(n, p) denote a binomially distributed variable with
parameters n and p.

Lemma 4.16. For i ∈ [`, i∗ − 1], it holds that

Pr[νi+1 > βi+1 | νi ≤ βi, G < L] ≤ 1

n3
.

Proof. For convenience, let the balls existing in X be black, and let the new
nL balls thrown be white. We define the height of a ball to be the load of
the bin in which it was placed relative to X ′, that is, if the ball was the k’th
ball to be placed in the bin, the ball’s height is defined to be k − (t + L).
Notice that the conditioning that G < L implies that all the black balls
have a negative height. We use µi to denote the number of white balls with
height ≥ i. For any i ≥ 0, we have νin ≤ µi and thus it suffices to bound
µi.

In Greedy[d] , by definition, the probability a ball has height at least i+1
is at most νdi which under our conditioning is at most βdi ≤ βi+1/2L. Since
we place nL balls independently, the number of balls with height at least
i + 1 is dominated by a B(nL, βi+1/L) random variable. Chernoff bounds
(e.g. Theorem 1.1 in [42]) imply that the probability that Pr[B(n, p) ≥
2np] ≤ exp(−np/3). Thus

Pr[νi+1 ≥ βi+1 | νi ≤ βi] ≤ Pr[B(nL, βi+1/2L) ≥ βi+1n]

≤ exp(−βi+1n/6)

≤ 1/n3.

30

DRAFT 4 THE HEAVILY LOADED CASE

since βi+1n ≥ 18 log n.

It remains to bound the number of balls with height ≥ i∗. To this end
we condition on νi∗ ≤ βi∗ , and let H be the set of bins of height at least
i∗ in X ′. Once a bin reaches this height, an additional ball falls in it with
probability at most βd−1

i∗ /n ≤ 1/n1+ε for some ε > 0 which depends only on
d and large enough n. The probability that any specific bin in H gets at
least k balls after reaching height i∗ is then at most Pr[B(nL, 1/n1+ε) ≥ k].
Recalling that Pr[B(n, p) ≥ k] ≤

(
n
k

)
pk ≤ (enp/k)k. Using this estimate and

applying a union bound over the bins in H, we conclude that for k = 4/ε

Pr[νi∗+k > 0 | νi∗ ≤ βi∗ , G < L] ≤ 18 log n ·
(
eL

knε

)k
≤ 1

2n2
, (21)

as long as n exceeds an absolute constant n0. On the other hand, Equa-
tion 18 already implies that for n ≤ n0, Lemma 4.14 holds with γ =
O(log n0) so that this assumption is without loss of generality.

Finally a union bound using (20) and Lemma 4.16 and (21), we get that

Pr[νi∗+k > 0 | G < L]

≤ Pr[ν` ≥ β` | G < L] +
i∗−1∑
i=`

Pr[νi+1 > βi+1 | νi ≤ βi, G < L]

+ Pr[νi∗+k > 0 | νi∗ ≤ βi∗ , G < L]

≤ bL
3
d−1

exp(a`)
+

log log n

n3
+

1

2n2

≤ bL
3
d−1

exp(a`)
+

1

n2
.

This concludes the proof of Lemma 4.14.

Lemma 4.14 allows us to bound Pr[Gap(t+ L) ≥ logd log n + O(logL)]
by Pr[Gap(t) ≥ L] + 1

poly(L) . Since Pr[Gap(t) ≥ O(log n)] is small, we can

conclude that Pr[Gap(t+O(log n)) ≥ O(logd log n)] is small. Another appli-
cation of the lemma, now with L = O(logd log n) then gives that

Pr[Gap(t+O(log n) +O(log log n)) ≥ logd log n+O(log log log n)]

is small. We formalize these corollaries next.

31

DRAFT 4 THE HEAVILY LOADED CASE

Corollary 4.17. There are constants γ, ζ which depend only on d, such that
for any t ≥ (4 log n)/a, Pr[Gap(t) ≥ ζ log log n+ γ] ≤ 2

n2 + 1
log4 n

.

Proof. Set L = 4 log n/a, and use 18 to bound Pr[Gap(t− L) ≥ L] ≤ b
n3 .

Set ` = ln(bL3/(d−1) log4 n)/a = Od(log log n) in Lemma 4.14 to derive the
result.

Corollary 4.18. There are universal constants γ, α such that for any t ≥
ω(log n), Pr[Gap(t) ≥ logd log n+α log log log n+γ] ≤ 3

n2 + 1
log4 n

+ 1
(log logn)4

.

Proof. Set L = ζ log logn+γ and use Corollary 4.17 to bound Pr[Gap(t− L) ≥
L]. Set ` = log(bL3/(d−1)(log log n)4)/a = O(log log log n) to derive the re-
sult.

This proves that with probability (1−o(1)), the gap is at most logd log n+
o(log log n). We can also use Lemma 4.14 to bound the expected gap. To-
wards this end, we prove a slight generalizations of the above corollaries:

Corollary 4.19. There is a universal constant γ such that for any k ≥ 0,
t ≥ (12 log n)/a, Pr[Gap(t) ≥ (5 + 10

a) · logd log n+ k + γ] ≤ 2
n2 + exp(−ak)

log4 n
.

Proof. Set L = 12 log n/a, and use (18) to bound Pr[Gap(t− L) ≥ L]. Set
` = k + log(16bL3 log4 n)/a to derive the result.

Corollary 4.20. There are universal constants γ, α such that for any k ≥ 0,
t ≥ ω(log n), Pr[Gap(t) ≥ logd log n+ α log log log n+ k + γ] ≤ 3

n2 + 1
log4 n

+
exp(−ak)

(log logn)4
.

Proof. Set L = log(16b(12 logn
a)3 log4 n)/a = 7 log logn

a + Oa,b(1) and use
Corollary 4.19 with k=0 to bound Pr[Gap(t− L) ≥ L]. Set ` = k +
log(16bL3(log log n)4)/a to derive the result.

Using the above results, we can now prove

Corollary 4.21. There are universal constants γ, α such that for t ≥ ω(log n)
E[Gap(t)] ≤ logd log n+ α log log log n+ γ.

Proof. Let `1 = logd log n+α log log log n+ γ1 for α, γ1 from Corollary 4.20,
and let `2 = (5 + 10

a) · logd log n+ γ2 for γ2 from Corollary 4.19. Finally, let

32

DRAFT 4 THE HEAVILY LOADED CASE

`3 = 12 log n/a. We bound

E[Gap(t)]

≤ `1+

∫ `2

`1

Pr[Gap(t) ≥ x] dx+

∫ `3

`2

Pr[Gap(t) ≥ x] dx+

∫ ∞
`3

Pr[Gap(t) ≥ x] dx

Each of the three integrals are bounded by constants, using Corollar-
ies 4.20 and 4.19 and (18) respectively.

All that remains to complete the proof of Theorem 4.2 is to show that
the lower bound condition on t is unnecessary.

Lemma 4.22. For t ≥ t′, Gap(t′) is stochastically dominated by Gap(t).
Thus E[Gap(t′)] ≤ E[Gap(t)] and for every k, Pr[Gap(t′) ≥ k] ≤ Pr[Gap(t) ≥
k].

The proof uses the notion majorization in a standard way and is deferen
to Section 4.3

4.2.1 The Left[d] Scheme

Essentially the proof of Theorem 4.2 required two components. The first is
the bound on the potential function shown in Theorem 4.13, and the second
is an induction based proof for the lightly loaded case shown in Theorem 3.1.
This proof structure also applies for the Left[d] , extending the bounds to
the heavily loaded case as well.

We sketch the argument. The first observation is that Theorem 4.13 in-
deed holds for Left[d] . The reason is that the exponential potential function
is Schur-Convex and therefore the theorem holds for any process which is
majorized by Greedy[d] . A fact that is shown in [12] via a straightforward
coupling. See Section 4.3 for a discussion of majorization and coupling.

All that remains is to prove the analog of Lemma 4.16. This follows in
a similar manner via the inductive relation expressed in Equation (3).

4.2.2 The Weighted Case

So far we assumed all balls are of uniform weight. Theorem 4.3 however
allows for balls to be assigned a weight drawn from a distribution D, as long
as D has a finite exponential moments. It is therefore natural to extend
the inductive part of the proof for the weighted case as well. Consider for

33

DRAFT 4 THE HEAVILY LOADED CASE

example the case where the size of each ball is drawn uniformly from {1, 2}.
Previous techniques such as [12] fail to prove an O(log log n) bound in this
case, and Theorem 4.3 only shows that Gap ≤ O(log n). In this example,
the few modifications that need to be done in order to extend the proof are
straight forward. The layered induction argument works as is, with the only
change being that we go up in steps of size two instead of one. This shows
a bound of 2 log log n+O(log log log n) for this distribution, which we soon
show is tight up to lower order terms.

Generalizing the argument, for a random variable W drawn from a
weight distribution D with a bounded exponential moment generating func-
tion, let M be the smallest value such that Pr[W ≥ M] ≤ 1

n logn(log logn)5

(the constant 5 here is somewhat arbitrary, and will only affect the proba-
bility of the gap exceeding the desired bound). Then carrying out a proof
analogous to Lemma 4.14, with step size M gives a bound of M(log log n+
O(log log log n)) with probability (1 − 3

(log logn)4
). This follows since by the

definition of M , the probability that any of the last O(n log n) balls exceeds
a size of M is O(1

(log logn)5
), and conditioning on this event the proof goes

through unchanged.
Indeed, the lemma is used with L = O(log n), the base of the induction

implies that for ` = O(log log n), the fraction of bins with load at least ` is
at most 1

L3 . By the argument in Lemma ??, no more than βiL+1n balls will
fall in bins that already have at least this load. Since we condition on the
O(n log n) white balls being of size at most M , the number of bins of load
`+M is at most βiL+1n. Continuing in this fashion, with step size M in each
step of the induction, there are at most O(log n) bins of load larger than
O(log log n) + M log2 log n. Finally, as before, the argument is completed
with an additional overhead of O(M) as each of these bins is unlikely to get
more than a constant number of balls. Finally, a second application of the
Lemma implies the claimed bound.

It is interesting to instantiate this bound for some specific distributions.
For an exponential or a geometric distribution, the gap is Θ(log n) and this
induction approach will not help us prove a better bound. Consider a half-
normal weight distribution with mean 1 (i.e. W is the absolute value of
an N(0, π2) random variable. Then M =

√
πerf−1(1 − 1

n logn(log logn)5
) =

Θ(
√

log n). This gives an improved bound of O(
√

log n log log n) instead of
O(log n). On the other hand, as we show in the next section, a lower bound
of Ω(

√
log n) is easily proved.

Similarly, if the weight distribution is uniform in [a, b], normalizing the
expectation to 1 makes b = 2 − a ≤ 2. An upper bound of b log log n ≤

34

DRAFT 4 THE HEAVILY LOADED CASE

2 log log n follows immediately.
We note that Lemma 4.22 does not hold when balls are weighted (c.f

[99],[13]). As a result this proof leaves a “hole” between n and n log n. It
proves the bound on the gap when O(n) or Ω(n log n) balls are thrown but
does not cover for example Θ(n

√
log n) balls.

4.2.3 Lower Bounds

If weights are drawn uniformly from {1, 2} one might hope the maximum
load to be 3/2 log log n+O(1). It is true that n/2 balls of weight 2 already
cause a gap of 2 log log n but one hopes that the balls of weight 1 would
reduce this gap. Our first lower bound shows that this intuition is not
correct and that the maximum load is indeed 2 log log−O(1).

Theorem 4.23. Suppose the weight distribution D satisfies Pr[W ≥ s] ≥ ε
for some s ≥ 1, ε > 0 and E[W] = 1, where s, ε are independent of n.
Then, for large enough n, for every m ≥ n/ε, the gap of Greedy[d] is at least
s(log log n/ log d)−O(s) with constant probability.

A similar lower bound is proven in [9] for the case m = n and uniform
weights. In the uniform case, majorization (similar to Lemma 4.22) extends
the lower bound to any m > n. The same could not be said in the weighted
case. For the m = n case the weighted case is almost as simple as a variable
change in the proof of [9]. The proof below extends the bound to all m ≥ n.
The main idea, similarly to the upper bound, is that (17) impleis a base case
for an inductive argument.

Proof. It is convenient to think of time m as time 0 and count both load and
time with respect to the m’th ball, so when we say a bin has load i in time
t it actually means it has load w(m)/n+ i at time m+ t, where w(m) is the
total weight of the first m balls. The bound will be proven for time m+n/ε
which is time n/ε in our notation. Intuitively, in this amount of time we
will see about n balls of weight at least s which would cause the maximum
load to increase by s(log log n−O(1)). The average however would increase
only by O(1

ε) = O(s), hence the gap would be at least s log logn−O(s).
We follow the notation set in [74], with appropriate changes. The vari-

able νj(t) indicates the number of bins with load in [(j − 1)s,∞) at time
t. We will set a series of numbers γi and times ti (to be specified later)
and an event Fi := {νi(ti) ≥ γi}. For the base case of the induction we set
γ0 = n/ log2 n and t0 = 0. We observe that Theorem ?? implies that for

35

DRAFT 4 THE HEAVILY LOADED CASE

large enough n, Pr[ν0(0) ≥ γ0] ≥ 1 − 1/n2, so F0 occurs with high prob-
ability. Indeed Theorem ?? implies that for the normalized load vector,
|Xt|∞ ≤ c log n for an absolute constant c. If half the Xt

i ’s are at least −s,
we are already done. If not then then

∑
i:Xt

i<−s
|Xt

i | is at least ns
2 . Thus the

sum
∑

i:Xt
i≥0 |Xt

i | =
∑

i:Xt
i<0 |Xt

i | ≥ ns
2 . The bound on |Xt|∞ then implies

that at least ns/c log n Xt
i ’s are non-negative. Since s ≥ 1, the base case is

proved.
Our goal is to show that Pr[Fi+1|Fi] is large. To this end, we define

ti = (1 − 2−i)nε and the range Ri :=
[
(1− 2−i)nε , (1− 2−(i+1))nε

]
. Finally

fix an i > 0 and for t ∈ Ri define the binary random variable

Zt = 1 iff ball t pushes load of a bin above is or ν(i+1)(t− 1) ≥ γi+1.

As long as ν(i+1)(t−1) < γi+1 it holds that for Zt = 1 it suffices that a ball
of weight at least s is placed in a bin of load h ∈ [s(i− 1), si). Conditioned

on Fi, the probability of that is at least ε
(
(γin)d − (γi+1

n)d
)
≥ εγdi

2nd
since we

will set γi+1 ≤ γi/2. Denote pi :=
εγdi
2nd

and by B(n, p) a variable distributed

according to the Binomial distribution. We have: Pr
[∑

i∈Ri Zi ≤ k | Fi
]
≤

Pr
[
B
(

n
ε2i+1 , pi

)
≤ k

]
. We continue exactly as in [?] by choosing γi+1 =

γdi
2i+3nd−1 . Now Chernoff bounds imply that as long as npi

ε2i+1 ≥ 17 log n it

holds that Pr
[
B
(

n
ε2i+1 , pi

)
≤ γi+1

]
= o(1/n2). The tail inequality holds as

long as i ≤ log logn/ log d−O(1), at which point the load had increased by
s(log log n/ log d) − O(s). The average increased by at most 4/ε ≤ 4s with
probability 3/4, and the theorem follows.

We note that the uniform distribution on {1, 2} (when normalized by a
factor of 2

3) satisfies the conditions of this Theorem with s = 2, ε = 1
2 . Thus

the gap is 2 log log n−O(1).
Another, rather trivial lower bound applies to distributions with heavier

tails.

Theorem 4.24. Let D be a weight distribution with EW∼D[W] = 1. Let M
be such that PrW∼W [W ≥ M] ≥ 1

n . Then for any allocation scheme, the
gap is at least M −O(1) with constant probability.

Proof. After throwing n balls, the probability that we do not see a ball of
weight M or more is at most (1 − 1

n)n ≤ 1
2 . Moreover, by Markov’s, the

average is at most 4 except with probability 1
4 . Thus with probability at

least 1
4 , the maximum is at least M and the average is at most 4.

Note that the theorem implies an Ω(log n) lower bound for an exponential
distribution, and an Ω(

√
log n) lower bound for the half normal distribution.

36

DRAFT 4 THE HEAVILY LOADED CASE

4.3 The Power of Majorization

In some cases it is possible to say that one process dominates another. Es-
tablishing a partial order of stochastic dominance is a powerful tool which
extends the analysis for a larger set of processes.

Definition 4. Consider two vectores x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
Rn. For every j let x[j] be the j’th largest entry of x. We say that x is
majorized by y denoted by x � y if for every i,∑

j≤i
x[j] ≤

∑
j≤i

y[j].

One can observe that the majorization relation is transitive.

Definition 5. A function γ : A → R, where A ⊂ Rn is said to be Schur-
convex if x � y implies γ(x) ≤ γ(y).

It is known that every symmetric and convex function is also Schur-
Convex (see page 258 in [95]), so in particular the function that tracks the
maximum value in the vector, γ(·) = || · ||∞, is Schur-convex, and so is the
potential function Γ from Theorem 4.13.

Definition 6. Let x, y be two distributions1 over Rn. We say that x is
stochastically majorized by y, written as x � y if for every Schur-convex
function γ it holds that E[γ(x)] ≤ E[γ(y)].

A standard technique for showing stochastic majorization is via cou-
pling. A coupling of x and y is a distribution z = (z1, z2) such that the
marginal distribution (z1, ·) is identical to x, and the marginal distribution
(·, z2) is identical to y. There could be arbitrary dependencies in the joint
distribution z. The following lemma encapsulates a simple observation that
demonstrates the power of coupling.

Lemma 4.25. Let x and y be two distrubtions over Rn. If there exists a
coupling z = (z1, z2) of x, y such that z1 � z2 then x � y.

Proof. We assume for simplicity the distributions are discrete. Let γ be
some Schur-convex function. Since z is a valid coupling we have E[γ(x)] =
Ez[γ(z1)] =

∑
z γ(z1) Pr[z] and similarly E[y] =

∑
z γ(z2) Pr[z]. The lemma

follows since γ is Schur-convex so for every term z = (z1, z2) it holds that
γ(z1) ≤ γ(z2).

1With a slight abuse of notation we conflate a distribution with a sample taken from
it.

37

DRAFT 4 THE HEAVILY LOADED CASE

The following lemma is taken from [9] and serves as the main tool for
estabilishing the majorization relation.

Lemma 4.26. Let x, y be two vectors in Rn such that x � y and assume
that both are sorted in decreasing order. Let ei denote the i’th unit vector,
i.e. ei has 1 in the i’th coordinate and zero everywhere else. If i ≥ j the
x+ ei � y + ej.

Proof. Observe that if i > j, then yi ≤ yj and y+ ei could be obtained from
y + ej by moving a unit from a large component to a smaller component,
therefore y + ei � y + ej . It is now sufficient to show that x + ei � y + ei.
Let Sk(x) be the sum of the k largest components of x. Notice that

Sk(x) ≤ Sk(x+ ei) ≤ Sk(x) + 1 (22)

By assumption for all k, Sk(x) ≤ Sk(y). Fix some k. Now, if Sk(x) < Sk(y)
then (22) implies that Sk(x+ ei) ≤ Sk(y+ ei). Assume that Sk(x) = Sk(y).
There are 3 cases:

Case 1. i ≤ k. Then

Sk(x+ ei) = Sk(x) + 1 = Sk(y) + 1 = Sk(y + ei).

Case 2. i > k. Then xi ≤ xk

Case 2.a. xi < xk. Since xk ≥ xi + 1 it follows from (22) that
Sk(x) = Sk(x+ ei) and therefore

Sk(x+ ei) = Sk(x) = Sk(y) ≤ Sk(y + ei).

Case 2.b. xk = xk+1 = . . . = xi. Observe that since Sk−1(x) ≤
Sk−1(y), Sk(x) = Sk(y) and Sk+1(x) ≤ Sk+1(y) we have that
yk ≤ xk and yk+1 ≥ xk+1. Since y and x are sorted we have

yk ≥ yk+1 ≥ xk+1 = xk ≥ yk.

We conlude that xk = yk = xk+1 = yk+1 and thus Sk+1(x) =
Sk+1(y). Repeating the argument we obtain xk = yk = xi = yi
and therefore

Sk(y + ei) = Sk(y) + 1 = Sk(x) + 1 = Sk(x+ ei).

38

DRAFT 4 THE HEAVILY LOADED CASE

The following lemma establishes a way of comparing different processes
in the case of uniform weights. It states that a majorization relationship
across the allocation probabilities implies stochastic majorization across the
respective precesses.

Theorem 4.27. Let p and q be two probability vectors of two generalized
placement processes (see Definition 1). Let x(t) and y(t) be the load vectores
of these processes respectively at time t, and assume all balls are of weight
1. If q � p then for every t, x(t) � y(t).

Proof. The proof uses Lemma 4.25 in an inductive way. For the base case,
both x(0) and y(0) are {0}n, so the lemma holds trivialy.

By the inductive hypothesis we have a coupling (z1(t − 1), z2(t − 1)) of
x(t − 1), y(t − 1) such that z1(t − 1) � z2(t − 1). Consider the following
coupling.

1. Pick a number α uniformly at random in [0, 1).

2. Assume p and q are sorted in decreasing order. Let i be such that∑
`≤i−1 p` ≤ α <

∑
`≤i p`. Similarly, let j be such that

∑
`≤j−1 q` ≤

α <
∑

`≤j q`.

3. Obtain x(t) by placing a ball in the i’th bin and y(t) by placing a ball
in the j’th bin.

It is straightforward to verify that this is indeed a valid coupling. It
remains to show that throughout the coupling x(t) is majorized by y(t). At
time t a ball is put in the i’th bin of x(t− 1) and in the j’th bin of y(t− 1).
However since q � p it must be that j ≤ i. The Theorem now follows by
Lemma 4.26.

In the remainder of the section we show some surprising examples where
majorization and Theorem 4.27 are used to bound the load of various pro-
cesses that are hard to analyze directly.

4.3.1 Greedy[d] with Non-uniform Sampling probability

Implementing Greedy[d] requires the ability to sample uniformly from the
set of n bins d times. In practice however obtaining a perfectly uniform
sampled bin is often not achievable. Consider for instance distributed hash
tables or key-value stores which are important and widely used applications.
Often they imploy a scheme called consistent hashing [56]. The main idea
is that both servers and items (key-value pairs) are hashed to the same key

39

DRAFT 4 THE HEAVILY LOADED CASE

space. An item is assigned to the server closest to it in the key space. This
general idea is prevalent both in the theory of distributed hash tables (c.f.
[98], [82]), and also in practical and widely used systems such as Cassandra
[23] and many more. Note that this scheme effectevily partitions the key
space across servers. The probablity a server is sampled is proportional to
the fraction of key space in its partition. Since these systems are large and
dynamic it is unreasonable to expect the key space to be partitioned equally
across all servers. As a result the distribution in which servers are sampled
is not uniform, and the unlucky servers end up with a larger fraction of the
items.

A natural way to increase the balance across servers is to implement
Greedy[d] , that is, to hash each item to several locations and place it in the
least loaded server. Let Q = q1, . . . , qn be some distribution over the n bins.
We define Greedy[d,Q] to be the allocation process whereby a ball is put in
the least loaded of d bins sampled according to Q. In particualr, Greedy[d]
is a special case where Q is the unifrom distribution.

It is not apriori obvious whether Greedy[d,Q] would be effective. In [20]
it was shown that when m = n Greedy[d,Q] guarantees a maximal load of
O(log log n) even when d = 2 and Q is fairly imbalanced. Things become
trickier when m >> n. Consider for instance the case where d = 2 and
q1 = 2/

√
n. The probablity that bin 1 obtains a ball is at least (2/

√
n)2 =

4/n, so this bin is expected to store at least 4 times the average, so the gap
grows linearly with m. Next we follow the arguments of [105] which show
that increasing d by a little would alleviate the problem.

Assume t− 1 balls had already been placed by the Greedy[d,Q] process.
Let p(d,Q, t) be the probablity vector that characterized Greedy[d,Q] for
the t’th ball (see Definition 1). In other words p(d,Q, t)i is the probability
Greedy[d,Q] places ball t in the i’th bin. Note that it is important to index
it by t as the value of the vector depends on the specific allocation of balls.
Similarly, let p(d,U) be the placement vector that characterizes Greedy[d] .
Recall, that p(d,U)i := (in)d − (i−1

n)d.

Lemma 4.28. Let 0 < α < 1 < β, ε > 0 be such that for all i, qi ∈ [αn ,
β
n]

and d ≥ (1 + ε)
ln(β−α1−α)

ln
(
β−α
β−βα

) . Then for all t, p(1 + ε,U) � p(d,Q, t).

The Lemma is proven via a straight forward calculation, see [105] for
details. Togethor with Theorem 4.27 and Theorem 4.1 the Lemma immedi-
ately implies:

Corollary 4.29. For α, β, ε as above, after m balls are placed using Greedy[d,Q]

40

DRAFT 4 THE HEAVILY LOADED CASE

, with probability 1−o(1/n) the maximum load would be at most m
n + ln lnn

ln(1+ε) +

O(1)

�Put a numerical example –Udi� UW

We note that the converse also holds. If d ≤ (1− ε) ln(β−α1−α)

ln
(
β−α
β−βα

) then there

is a distribution Q with each qi ∈ [α/n, β/n] for which the maximal load is
expected to be (1 + Ω(1))m/n.

4.3.2 The (1 + β) process

The (1 + β) process is a general allocation processes parameterized by β ∈
[0, 1]. Each time a ball is placed, with probability β, Greedy[2] is used, and
with probability 1−β the ball is placed using Greedy[1], i.e. simply placed in
a random bin. In other words, the process is characterized by the allocation
vector p where pi = β(2i−1)

n2 + 1−β
n . The process turns out to be a useful

process to compare against using majorization, but it is also interesting in
its own right. Consider for instance the case where the cost assigned to
querying the load of the bins is relatively high. This scenario may occur in
a distributed storage system in which a front-end server places data items
in back-end servers. Using Greedy[2] requires querying two servers for their
load, possibly locking them until the data item is placed. Moreover, a lookup
for the item results in two queries. In the (1 + β) process with probability
1−β the assignment is done without performing this query, and the expected
lookup cost is only (1+β). The question of course is how much imbalance is
introduced due to this modified procedure. In [72] it was suggested to study
the (1+β)-process in the context of queueing theory. This process may also
serve to model the case where all balls perform Greed[2], but some fraction
of them are ‘misinformed’, say by an unreliable load reporting mechanism,
and make the wrong decision.

As a general placement process, the (1 + β) process satisfies assump-
tion (5) and (6) with β = Θ(ε). Recall that Gap(m) denotes the additive
difference between the maximal bin and the average load, and that Gap’(m)
denotes the additive difference between the maximal and minimal bins. The-
orem 4.3 implies:

Corollary 4.30. For the (1+β) process, E[Gap(m)] ≤ E[Gap′(m)] ≤ O
(

logn
β

)
.

We later show that this bound is tight up to constants for β bounded
away from 1. Thus, Gap(m) has three regimes as a function of β. When

β = 0 we are looking at Greedy[(1)], the gap is Θ(
√

m logn
n) which goes to

41

DRAFT 4 THE HEAVILY LOADED CASE

infinity with m. When 0 < β < 1 the gap is Θ((log n)/β) independent of m,
and when β = 1 we are looking at Greedy[2] and the gap decreases further
to log log n. We note that Gap′(m) = Ω(log n) also for Greedy[d] .

With Corollary 4.30 at our disposal we consider new allocation schemes.
As a first example consider the bias-away-from-max and bias-towards-min
processes, defined as follows:

paway from max
i =

{
1−η
n i = 1

1
n + η

n(n−1) otherwise

and

ptowards mini =

{
1+η
n i = n

1
n −

η
n(n−1) otherwise

It is easy to check that both these processes are majorized by the (1+ η
4n)-

choice process so by Theorem 4.27 the expected gap for these processes is
bounded by O(n log(n/η)/η). It’s remarkable that even a small bias away
from the max or towards the min suffices for the gap to stay bounded inde-
pendent of m. It’s worth noting that it is not obvious how to analyze these
processes directly or apply the techniques in [12, 99].

4.3.3 Graphical Processes

Let B be the set of all subsets of bins. Assume we have some fixed distri-
bution τ over B. A ball is placed by sampling a S ∈ B according to τ and
placing the ball in the least loaded of the bins in S. We assume for ex-
plicitness that ties are broken according to some fixed ordering of the bins.
Observe that Greedy[d] is a special case where τ(S) = 1/nd for all S of car-
dinality at most d. Similarly Left[d] is captured by setting τ(S) = (d/n)d for
every |S| = d which contains one bin from every set. A similar model was
suggested in [58] where sets are limited to be of cardinality 2, so the bins
could be associated with nodes of a graph, and the sets with its edges. They
show that if the graph is regular and dense enough then a layered induction
approach could be used to prove bounds in the spirit of Theorem 3.1. A
related model is also presented in [54] where it is shown that if all sets are
of logarithmic size and are approximately regular then a constant load is
achieved with m = n. Here we follow a more general framework taken from
[89].

The main difficulty with analyzing graphical processes is that generally
they cannot be characterized by a probability vector. In particular if a bin
has the smallest load of all bins which share a set with it, then the probability

42

DRAFT 4 THE HEAVILY LOADED CASE

it receives a ball is zero, even if its load is above the global average. We
do not know how to analyze these processes directly. Our approach is to
show that in the unweighted case the gap of a graphical process is bounded
by the gap of a (1 + β) process for an appropriately chosen β. We show
a majorization relationship that holds for every specific allocation of balls
into bins.

We say that τ is ε-expanding if every S ⊂ B of cardinality at most
|S| ≤ n

2 has
∑

A⊆S τ(A) ≤ (1−ε)|S|
n and

∑
A:A∩S 6=∅ τ(A) ≥ (1+ε)|S|

n .

Theorem 4.31. If τ is ε-expanding, then the expected gap between the heav-
iest and lightest bins after throwing m balls is O(logn

ε).

Proof. Let p(t) be the probability vector characterizing the process after
placing t balls. Note that p(t) may indeed depend upon the specific alloca-
tion at time t, this dependency however plays no role in the argument below.
Let q denote the probability vector of the 1 + β process. We show that if
ε ≥ β then p � q, and so the theorem follows directly from Theorem 4.27.

Let Sk be the set of k lightest nodes (breaking ties according to the tie-
breaking rule). We calculate the probability Pk that a ball falls in Sk. A
ball falls in Sk if and only if the sampled set has a non-empty intersection
with Sk. The expansion of τ implies that Pk ≥ (1 + ε)k/n when k ≤ n/2

and Pk ≥ 1 − (1−ε)(n−k)
n = k+ε(n−k)

n when k > n/2. Now let Qk denote
the probability a ball falls in the k lightest bins in the 1 + β process, so
Qk = (1−β)k/n+β(1− (1−k/n)2) = k

n(1+β− βk
n). One can readily verify

that if ε ≥ β then Pk ≥ Qk for all k. Indeed, if k ≤ n/2 it holds that

(1 + ε)k

n
≥ k

n
(1 + ε− εk

n
)

and if k > n/2 we have that

k + ε(n− k)

n
≥ k

n
(1 + ε− εk

n
)

The theorem implies explicit bounds for some interesting processes.
Expander Graphs: Assume we have a graph over the sets of bins, and

τ samples uniformly an edge in the graph (that is the model considered in
[58]). Observe that a constant degree regular expander satisfies the condition
of the theorem. Such an expander has only O(n) edges and still obtains a
logarithmic gap. In particular, if an n node d regular graph has the property

43

DRAFT 4 THE HEAVILY LOADED CASE

that every set S of cardinality at most n/2 is adjacent to at least (1 + ε)|S|,
then a uniform measure over its edges is ε/d expanding.

Rings: As a second example assume the bins are indexed by 0, 1, ..., n−1.
The assignment algorithm samples uniformly i ∈ [n] and puts the ball in
the least loaded of the bins i, i+ 1, ..., i+ k − 1, where operations are done
modulo n. This algorithm is natural in the common scenario where the
bins are represented by adjacent locations in memory (or network), and
it is desirable to have an access pattern that preserves locality. It is also
common in key-value stores which use consistent hashing, such as Amazon’s
Dynamo [29] where the range i, ..., i+k is used for replication and may store
multiple copies of the object. The theorem implies that even such a moderate
attempt at load balancing can bound the gap by O(n logn

k). To the best of
our knowledge it was previously unknown that the gap does not diverge.
There is no reason to believe this bound is tight, in fact, simulations seem
to suggest the true gap to be much smaller. Improving over Theorem 4.31
for this case is an intruiging and challenging open problem.

4.4 A Lower Bound

Theorem 4.3 is tight, even for the case of Greedy[d] . This does not contra-
dict Theorem 4.1 since it bounds the additive gap between the maximum
and the minimum, while Theorem 4.1 bounds the gap between the maximum
and the average. To see this note that if the placement algorithm samples
sets S of size bounded by d then after throwing Ω(n logn

d) with constant
probability there would be a bin that was untouched by any of the sets and
thus must remain empty. The gap between the average and the minimum
is therefore Ω(logn

d), even in the case of Greedy[d] .
For the (1 + β) scheme we show a tight lower bound also for the gap

between maximum and average. Consider the (1 + β)-choice process, and
recall that ε ∈ Θ(β). Throw an logn

β2 balls into n bins using the (1+β) choice

process, where a is to be defined later. The average load is thus a logn
β2 . The

expected number of balls thrown using one choice is an(1−β) logn
β2 . Raab and

Steger [93] show that the load of the most loaded bin when throwing cn log n
balls into n bins using 1-choice is at least (c + (

√
c/10)) log n. Plugging in

c = a(1−β)
β2 , we get that the number of balls in the most loaded bin is at least(
a(1− β)

β2
+

√
a(1− β)

100β2

)
log n =

(
a

β2
+

√
a(1− β)− 10a

10β

)
log n.

44

DRAFT 5 DICTIONARIES

It is easy to see that for a = (1−β)
200 , this is Ω((1− β) log n/β) more than the

average.

4.5 Adaptive Schemes

Adaptive schemes are ones where the number of random bins picked for a
ball is not fixed apriori, as in Greedy[d] but rather depends upon the load
observed. The scheme ADAPTIVE was proposed in [14] following the work
in [26]: m balls are placed sequentially. For each ball i repeatidly sample
bins uniformly and independently, until a bin with load at most di/ne is
found. Ball i is then placed in that bin. Clearly the maximum load is at
most dm/ne + 1. The question is how many probes are performed by the
algorithm. It is shown that the expected total number of probes ADAPTIVE
performs over the placement of m balls is O(m). Note that this algorithm is
not suitable as a basis for a dictionary because there is no criteria for when
an item is not in the bins, so the worst case time for a (unsuccessful) lookup
is n.

5 Dictionaries

Dictionaries are an abstract data structure that stores a set of (key, value)
pairs. Typically the assumption is that all keys are distinct. The data
structure supports the operations Insert(key,value), Lookup(key), and
Delete(key). In practice the values may be stored adjacently to the keys,
or if they are big, the values would be pointers to larger objects. While these
differences have a big performance impact in practice they are orthogonal to
the design of the dictionary itself, so here we focus on the keys themselves.
The keys are drawn from a universe U . If the dictionary is to store n items we
assume that |U| ≤ poly(n), so in particular keys are assumed to be binary
strings of length O(log n). The justification of this assumption is derived
from the observation that if the universe is larger it could be hashed down
by a pairwise independent function to a polynomially small universe with
the probability of collisions over a set of size n being polynomially small.
This approach is known as ‘collapsing the universe’ and we do not discuss
it further, see [101],[67] for some approaches. We operate in the word RAM
model, where is is assumed that each memory word is comprised of O(log n)
bits and is big enough to store a full key. Thus, in this terminology, to store
all keys we need linear space. Note that a trivial lower bound for recognizing
whether a key is in the data structure is log

(U
n

)
which is Ω(n log n) bits, or

45

DRAFT 5 DICTIONARIES

Ω(n) memory words when U is polynomial in n. In most of what follows we
also keep the random hashing assumption, which means we assume we can
compute a fully random mapping from U → T where T is a much smaller
domain, typically O(n) in size.

In the previous sections we presented the d−way chained hash table
and saw how multiple choice schemes underly the analysis. In practice, the
operation of allocating new memory is quite costly. When assessing the space
requirement of a dictionary we therefore often assume that all the space is
allocated in advance. When treated this way, the hash table based on Left[d]
must allocate large enough buckets upfront and uses O(n log log n/d) space.
Insertion time is O(d) (or O(log log n) depending on implementation details)
and lookup time is O(log log n) in the worse case. If log log n hash functions
could be evaluated in parallel than the lookup time could be improved to
O(1) as was shown in [18]. Could this be improved?

The answer is yes. In a classic work Fredman et. al. [49] presented a
static construction, that is, a dictionary where all items are given up front
and it supports only lookups. The data structure has linear space and con-
stant time lookups. It was made dynamic in [35] where the insertions and
deletions are in amortized expected constant time. Further improvements
given in [34] and [32] where all operations are constant time with high prob-
ability. We will see a construction with similar properties at Section 5.2.

5.1 Cuckoo Hashing

A natural way to improve over d-way chaining and constructions based on
Greedy[d] is to allow the items to move between their designated bins.
Cuckoo Hashing [86] is a data structure that does just that. The items
are stored in two tables T1, T2, each containing (1 + ε)n slots where ε > 0 is
independent of n. A slot is simply enough space to store an item from the
universe U and is the unit of space for this discussion. So the space is O(n),
in fact just slightly more than 2n. Cuckoo Hashing uses two hash functions
h1, h2 : U → [(1 + ε)n]. As usual, for now the hash functions are assumed
to be fully random. To store a set S ⊆ U , each item x ∈ S is stored either
in T1[h1(x)] or in T2[h2(x)]. Since each item may reside in one of only two
locations, maintaining this invariant guarantees that the lookup requires at
most two computations of the hash functions and two memory probes. We
present a modification to Cuckoo Hashing, suggested in [61] where on top of
the tables there is also a constant size array called the stash. The invariant
is modified so that each item may also reside in the stash. Since the stash
is constant sized, the lookup time is still bounded by O(1).

46

DRAFT 5 DICTIONARIES

When inserting x the first priority is to place it either in T1 or T2, and
not the stash. If one of its two designated locations are available, x is
placed and the insertion succeeds. Of course, it may be the case that both
locations are full. In that case x is inserted in T1[h1(x)] anyhow, evicting
the current occupant of that slot, lets call it y. Now y is inserted at its
second viable location at table T2, if that location is occupied, that item is
evicted and inserted at table T1, possibly evicting a different item and so
on. The algorithm continues to iterate that way until either an empty slot
is found or until it reaches a certain predefined bound on the number of
evictions (which will turn out to be O(log n)). When this bound is reached
the insertion to the tables themselves had not succeeded so the algorithms
attempts to insert the currently evicted item in the stash. If the stash is also
full then the insertion procedure failed. The action taken upon an insertion
failure is application dependent and outside our scope. Typically it is to
rehash all elements with different hash functions, but in some cases it may
be preferable to just drop an element from the dictionary. The pseudo code
for the insertion algorithm is below.

Algorithm 1. Insertion in Cuckoo tables with a stash

1: procedure Insert(x)
2: nestless:= x;
3: i := 1;
4: loop maxloop times
5: swap(nestless,Ti[hi(nestless)]);
6: if nestless = nill then return;

7: i← 3− i;
8: if stash not full then
9: add x to stash

10: else return fail

end

The running time of the insertion is bounded by the parameter maxloop.
The two most important things to reason about are the expected running
time of the insertion algorithm and the probability in which the insertion
algorithm fails. These issues are addressed in the following theorem.

Theorem 5.1. When inserting a set of n elements into two tables of size
(1+ ε)n each and a stash of size s, and setting maxloop = O(s log1+ε n), the

47

DRAFT 5 DICTIONARIES

expected running time of the Insert procedure is O(1) and the probability of
a failed insertion is O(n−(s+1)) where s is the size of the stash.

The remainder of the section is dedicated to the proof of this theorem.
While there are several approaches, we follow closely the proof in [8]. A
short description of alternative approaches could be found in Section 5.1.1.
The starting point of all approaches is showing a connection between the
failure probability of the insertion algorithm and static structural properties
of the ‘cuckoo graph’.

Definition 7. The Cuckoo Graph G(S, h1, h2) (denoted G(S) if context is
clear) is a bipartite multigraph where each side consists of (1 + ε)n nodes,
labeled 1...(1 + ε)n. For each x ∈ S the pair (h1(x), h2(x)) is an edge for a
total of n edges.

A connected component of a graph is unicycle if it contains exactly one
cycle. Trivially, a connected component is unicycle if and only if it has the
same number of edges and nodes.

Consider an element x and let S be the set of all elements placed in the
two tables when x is inserted. Clearly, a necessary condition for the insertion
of x to avoid the use of the stash is that the connected component of x in
G(S, h1, h2) is either a tree or a unicycle. Otherwise the number of elements
(including x) is greater than then the number of available slots in the tables
and the stash must be used. It turns out that the converse is also true and
if the connected component has at most one cycle the insertion procedure
would place the item in the tables. Further, the running time of the insertion
algorithm is tied to the size and shape of the connected components in the
cuckoo graphs. The following lemma states that it is sufficient to set maxloop
to be either twice the size of a connected component or three times the size
of its longest path.

Lemma 5.2. Let c(x) denote the connected component of x in the cuckoo
graph. If c(x) has at most one cycle then there is a t < ∞ such that the
insertion of x succeeds after t iterations, without using the stash, i.e. the
insertion algorithm returned in Line (6). Further, t is at most twice the
number of nodes of c(x), and c(x) contains a path of length t/3.

The proof is taken from [30].

Proof. Consider the walk W in the cuckoo graph that corresponds to the
table cells visited during the insertion of x. The first thing to observe is
that W cannot be trapped in a single cycle. To see this let (u, v) be the first

48

DRAFT 5 DICTIONARIES

edge of a cycle in W , so the edge (u, v) corresponds to some item y, at first
y resides in the slot associated with u, and then is moved by the insertion
algorithm to v. Once the cycle returns u there are two options. Either the
slot u is empty, in which case the insertion procedure ends, or there is some
item placed in u. This item however cannot be y since y now resides in v.
It follows that the next edge in W is not part of the cycle.

We now take a closer look at the walk W . If W has no repeated cells then
its length is at most |c(x)| as required. Otherwise, let u be the first vertex
repeated in W . So, the cuckoo graph contains a cycle C which contains u.
The discussion above implies that the edge following u’s second occurrence
does not belong to C. Now consider the walk W ′ which is the suffix of W
starting after the first occurrence of u in W . Suppose there is a vertex that
is repeated in W ′, let w be the first such vertex. If w is not in C then w
belongs to a cycle different than C contradicting the assumption that c(x)
is unicyclic. If w ∈ C there are two cases. In the first case w = u. This
implies that the edge following u’s second occurrence belongs to a cycle
different than C. If u 6= w then the path between u’s second occurrence and
w belongs to a cycle different than C, again, contradicting the assumption
that C is the only cycle in the component. Therefore the walk W ′ does
not contain repeated vertices. By construction the walk W \W ′ also does
not contain repeated vertices. We conclude that t ≤ 2|c(x)| as required.
Further, the occurrences of u partitions W to at most 3 paths completing
the proof of the lemma.

While the running time of the algorithm depends upon the size of the
connected components. The failure probability of the algorithm depends on
the their density as captured by the following concept.

Definition 8. The excess of a graph G, denoted as ex(G) is the minimum
number of edges one has to remove from G so that all connected components
of the remaining graph are either trees or unicycles.

The following characterization of excess turns out be useful.

Lemma 5.3. The cyclolamatic number of a graph, denoted by γ(G) is the
minimal number of edges one has to remove from G to obtain a graph with
no cycles. Let ζ(G) denote the number of connected component of G with at
least one cycle. Then, ex(G) = γ(G)− ζ(G).

Proof. Let T be a component of G which contains a cycle. We first claim
that ex(T) + 1 = γ(T).

49

DRAFT 5 DICTIONARIES

≥: By definition, there is a set of S of ex(T) edges, the removal of which
leaves at most one cycle. Since T contains a cycle, the minimality of
S implies that T \ S also contains exactly one cycle. Removing one
additional edge from the remaining cycle creates an acyclic graph.

≤: By definition there is a set of edges S such that |S| = γ(T) and T \ S is
acyclic. Further, the minimality of S implies that T \ S is connected.
Now we can add back one more edge from S creating a component
with at most one cycle.

The lemma follows by summing up the excess across the cyclic components
of G.

It turns out that the excess of the cuckoo graph is a crucial parameter
determining the success of the insertion procedure.

Lemma 5.4. Given a set of keys S and two hash functions h1, h2 and as-
suming maxloop is large enough as in Lemma 5.2. If the Insertion algo-
rithm inserts the S items sequentially and places s items in the stash then
s = ex(G(S, h1, h2)).

Proof. A connected graph over k nodes has exactly one cycle if and only if
it has k edges. Therefore, if a set S′ is stored only in the tables T1, T2, it
must be the case that every connected component of G(S′) has at most one
cycle. Otherwise, a connected component with more than one cycle would
have more elements than slots.
≥: Assume that T ⊂ S is stored in the stash, and S′ = S \T is stored in

the two tables. The discussion above implies that every connected compo-
nent of G(S′) is either acyclic or unicyclic, which by the definition of excess
means that s = |T | ≥ ex(G).
≤: We use induction on the cardinality of S. If S is empty then both

the excess and the stash size are 0. Assume that a set of keys S had been
inserted, a set of keys T had been put in the stash. By the induction
hypothesis |T | ≤ ex(S). We now insert a new element y ∈ U \ S. We
proceed by case analysis:

Case 1: The item y is inserted in the tables without placing an item in the
stash. So |T | ≤ ex(S) ≤ ex(S ∪ y).

Case 2: The insertion procedure places some item in the stash. We need
to show that the excess of the graph increased. Let S′ = S \ T . We
know by Lemma 5.2 that this implies that G(S′ ∪ {y}) must contain

50

DRAFT 5 DICTIONARIES

a connected component that is neither a tree nor a unicyclic. Since
ex(G(S′)) = 0 it must be the edge corresponding to y that makes
the difference. Now we use Lemma 5.3. If y is a cycle edge in G(S′)
it is also a cycle edge in G(S), the cyclomatic number of its compo-
nent increased by one while the number of cyclic components remained
unchanged. If y connects to cyclic component in G(S) then the cyclo-
matic number remained unchanged while the number of cyclic com-
ponents decreased. Either way ex(S ∪ y) = ex(S) + 1 and the Lemma
follows.

Lemma 5.4 establishes the excess of the cuckoo graph as the key struc-
tural property that determines the success of the insertion procedure. In
the following we show that when the hash functions are chosen randomly, it
is highly unlikely that the excess is large.

Theorem 5.5. Let ε > 0 and s ≥ 1. For n > 1, m = (1 + ε)n let G
be the cuckoo graph constructed by a set S ⊆ U of size n, and two hash
functions h1, h2 : U → [m] chosen uniformly at random from all possible
such functions. Then:

Pr [ex(G) ≥ s] = O(n−s) (23)

Proof. The proof is by a counting argument. We start by defining the object
of interest.

Definition 9. A graph is said to be an excess−s core graph if its excess
is exactly s, it is leafless and every connected component has at least two
cycles.

Lemma 5.6. An excess−s core graph with t edges has t− s nodes.

Proof. We first prove the lemma for the case the graph is connected. By
definition there are s cycle edges whose removal leave behind a unicycle
connected graph. This graph has t − s edges, and therefore t − s nodes. If
the graph has k connected components each with ti edges and excess si then
the number of nodes is

∑
(ti − si) = t− s.

We count the number of unlabeled excess-s core graphs with t edges.

Lemma 5.7. The number of non isomorphic unlabeled excess−s core graphs
with t edges is tO(s)

51

DRAFT 5 DICTIONARIES

Proof. We first claim that the number of trees over k nodes, that have `
leaves is bounded by k2`. To see this we use induction on `. For ` = 2 there
is exactly one tree with two leaves: a path of length k. Now, for ` ≥ 3 a tree
with ` leaves is composed of a path of length at most k connected to a tree
with `− 1 leaves. If t is the length of that path then there are at most k− t
nodes for this path to connect to. The number of trees is therefore at most

k∑
t=1

(k − t)2(`−1)(k − t) ≤ k · k2`−1 = k2`

Consider now an excess−s core graph with t edges which is connected. Each
such graph could be built by taking a tree with t− s− 1 edges and at most
2s + 2 leaves, and then adding s + 1 cycle edges. There are at most t2s+2

ways of adding these edges. We conclude that the number of these graphs
is bounded by t2s+2 · t2s+2 ≤ t8s as s ≥ 1.

Finally consider an excess−s core graph with k components. We show
by induction that the number of such graphs is bounded by t(8s+2k). The
base case is shown above. For the inductive step observe that every such
graph is created from one component with t′ < t edges and excess s′ < s,
and the remaining k−1 components. The number of such graphs is therefore
bounded by∑

t′<t

∑
s′<s

t′5s
′ · (t− t′)5(s−s′)+2(k−1) ≤ ts · t5s+2(k−1) ≤ t5s+2k

Since each connected component has at least two cycles, each component
contributes at least one edge to the excess. Therfore k ≤ s and the lemma
follows.

Every graph G with ex(G) ≥ s ≥ 1 contains an excess−s core as a
subgraph. To see this remove all cycle edges until the excess is exactly s.
Then remove leaf nodes until there are none. At this point all components
which were trees have been eliminated, and unicyclic component are reduced
to simple cycles. Remove components that are simple cycles, and what
remains is the excess core graph.

Now that we know how many different core graphs there could be we
need to count the number of possible labelings a core graph can get as part of
a cuckoo graph. Recall that the cuckoo graph is bipartite with m = (1 + ε)n
nodes on each side.

Fix an unlabeled bipartite excess−s core graph G with t edges and k
components, and fix some T ⊆ U so that |T | = t. First, for each (bipartite)

52

DRAFT 5 DICTIONARIES

component we need to decide which part is matched with which part of the
cuckoo graph, there are 2k < 2s ways of doing that. We know the number
of nodes in G is t − s, so there are at most mt−s ways of assigning labels
from [m] to the nodes. Finally, there are t! ways of assigning the elements of
T to the edges. To conclude, the number of bipartite excess−s core graphs
where each node is assigned to a node from the bipartite cuckoo graph, and
where the t edges are labeled with distinct elements from T is at most

t! · 2s ·mt−s · tO(s)

If G with such a labeling is fixed, and the hash functions h1, h2 are chosen
uniformly at random, then the probability that all edges (h1(x), h2(x)), x ∈
T match the labeling is 1/m2t.

Let pT be the probability that the cuckoo graph G(T, h1, h2) has excess
at least s. By the union bound

∑
T⊆S

pT ≤
∑
t≤n

(
n

t

)
t! · 2s ·mt−s · tO(s)

m2t

=
2s

ms

∑
t≤n

(
n

t

)
t! · tO(s)

mt

≤ 2s

ms

∑
t≤n

nt · tO(s)

mt

≤ 1

ns
·
(

2

1 + ε

)s
·
∑
t≤n

tO(s)

(1 + ε)t
= O

(
1

ns

)
This completes the proof of Theorem 5.5.

Finally we need to bound the probability a failure is triggered despite
the excess being small. This can only happen if maxloop is too small.

Lemma 5.8. Assume a set S of n items is inserted, where the size of each
table is m = (1 + ε)n. Let u, v be two nodes, then probability that there is a
simple path from u to v in G(S) of length ` is at most 1

n(1+ε)`

Proof. The proof is by a counting argument. We count the number of pos-
sible paths between u and v. There are m ways to pick the first edge, at
most m to pick the second, and so on. The `’th edge must end in v so in
total there are at most m`−1 possible simple paths. There are

(
n
`

)
ways to

choose a set of ` items from S, then there `! ways of ordering them, and a

53

DRAFT 5 DICTIONARIES

probability of 1/m2` that they are associated with a given path. All in all,
the probability is bounded by(

n

`

)
·m`−1 · `! · 1

m2`
≤ n`

m`+1
≤ 1

n(1 + ε)`

As in Lemma 5.2, let c(x) denote the component of item x in the cuckoo
graph. Let y be an edge associated with another item from S. Clearly
y ∈ c(x) iff there is a path connecting h1(y) and h2(x). The probability
for this according to lemma 5.8 is at most

∑
`

1
n(1+ε)`

= O(1/n(1 + ε)). We

conclude that the expected number of edges in c(x) is O(1/(1 + ε)), so the
by Lemma 5.2 so is the expected running time of the insertion algorithm.
Further, by setting ` = O(s log1+ε n) we see that with probability O(1/ns)
there is no path of length ` in the graph.

Combined with Theorem 5.5 this completes the proof of Theorem 5.1.

Deleting with a stash Deletions are simple with cuckoo hashing without
a stash. Removing an item x requires nothing more simply deleting it from
its location in the tables. Once a stash is used it might be the case that
a deletion of x would allow an item currently in the stash to be placed in
the tables. If that item stays in the stash it may cause the stash to become
too big. A simple solution to try to insert all items in the stash upon every
deletion. This would solve the problem but would cause deletions to take
logarithmic time in the worst case w.h.p.. An alternative approach is to try
to insert all items of the stash after every insert operation. Deletion now
still takes O(1) time in the worst case, and since with high probability the
stash contains only O(1) items (and most likely zero), the insert operation
is affected by a constant factor.

5.1.1 Alternative Proof Approaches

One advantage of the combinatorial nature of the proof above, it that it
allows for further analysis with respect to specific and explicit hash families.
In fact, that was the main motivation of the work in [8]. The original cuckoo
hashing paper [86] also took a similar approach. A different approach is to
look at the problem from a random graph theory perspective. This obscures
some of the combinatorics but places the problem within the larger context
of random processes. In that approach we observe that the assumption the
hash functions are fully random implies that the cuckoo graph is sampled via

54

DRAFT 5 DICTIONARIES

a standard model of random graph, where m edges are sampled uniformly
over n nodes. Further, in the relevant parameter setting, this distribution is
in the the sub critical phase (i.e. before large connected components appear).
This domain is widely studied in the literature and a number of tools (such as
Poisson approximations, branching processes etc) have been used to identify
structural properties of the components. A fairly straightforward application
of these techniques imply the result above. This approach was taken in [61].

In [41], [64] they use the assumption of full randomness to prove tight
bounds on the failure probability and on the total construction time of the
dictionary.

5.2 Some Interesting Variations

The simplicity of cuckoo hashing leads to some interesting variations, we
sketch two of these.

De-amortized cuckoo hashing Cuckoo hashing guarantees a worst case
constant lookup time and deletion time. The insert operation takes constant
time only on expectation and O(log n) with hight probability. A natural
goal is to improve upon this so that all operations take O(1) in the worst
cast. The question on whether such a construction is possible is remarkably
open and probably one of the most intriguing problems in the field. A
slightly weaker objective is to have all operations take O(1) time with high
probability. More formally, we say a series of operations is n-bounded if
at any given time at most n items exist in the dictionary. Let p(·) be a
polynomial, our goal is to construct a dictionary so that for every p(n)
operations which are n-bounded, the worst case time per operations over
the series is O(1) with probability 1− 1/p(n).

In [34] it is was first shown how to construct a dictionary with this prop-
erty. We sketch here a construction with similar guarantees based on Cuckoo
hashing. It is much simpler and arguably has smaller leading constants. It
is taken from [6] later extended in [7] to a succinct data structure.

The main idea is to de-amortize the insertion by using a searchable queue.
The approach was first suggested in [60] in a slightly different variant and
without analysis. The construction is parameterized by an integer L which
depends on p(·). The idea is very simple, on top of the tables T0, T1 the
construction also maintains a queue Q. This immediately implies that the
lookup and delete procedures need to inspect not only the tables and the
stash but the queue as well. We will see that the queue will have at most
O(log n) elements in it. The first step is therefore to construct a queue

55

DRAFT 5 DICTIONARIES

that supports constant time lookup operations. It is not hard to see that
randomly hashing a linked list into a dictionary with nδ space has this
property. Armed with such a queue the question is which items to put in
the queue and how to perform the insert operation. Upon in insertion of
an item x the pair (x, 0) is placed at Q.Tail. The zero tag is a single bit
indicates that when it is x’s turn to be inserted into the tables, the first
location to be tried is the one in T0. Subsequently a pair (y, b) is removed
from Q.head, where y is the item and b is the bit which indicates where to
try to insert the item. The insert operation now performs at most L moves,
dequeuing a new item whenever and item is inserted successfully into the
tables. Note that the number of operations may be less than L if the queue
is empty. At the end of the L operations the current nestled item is stored,
along with the bit indicating where to continue the insert at the head of the
queue. If an item closes a second cycle in its connected component it cannot
be inserted and is pushed to the back of the queue, effectively conflating the
stash with queue.

The performance of the scheme depends upon the queue containing at
most O(log n) items at any point in time. We sketch the argument that
this holds with high probability. There are two reasons an item is put in
the queue, the first is because an item closes a second cycle in its connected
component. We have already seen something similar in Theorem 5.1. A
slight modification shows that with probability 1 − 1/p(n) there would be
at most O(1) of those items in the queue throughout the sequence.

The second reason an item could be inserted in to the queue is simply
because L operations are not sufficient to place it in the tables. For an item
x let C(x) be its connected component in the cuckoo graph upon insertion.
We have seen that the time to insert an item x is O(|C(x)|). It follows
that if there are k items in the queue, it must be the case that the sum
of sizes of their connected components is at least Lk. For a single item x
we have already seen in Lemma 5.8 a bound on |C(x)|. The lemma could
be rephrased so that |C(x)| is dominated by a geometric variable. In [6]
they generalize the analysis for a set of connected components and prove
the following:

Lemma 5.9. For a cuckoo hashing scheme with two fully random hash
functions and two tables of size (1+ε)n, any constant c1 > 0 and any integer
T ≤ log n there exists a constant c2, such that for any set of elements S of

56

DRAFT 5 DICTIONARIES

size n and a subset x1, . . . , xT ∈ S it holds that

Pr

[
T∑
i=1

|C(xi)| ≥ c2T

]
≤ exp(−c1T)

where C(x) is the connected component of x in the cuckoo graph determined
by S and the two hash functions.

In other words, the sum of sizes of the connected components of T items,
concentrate more or less like the sum of T geometric variables. In our setting
this implies that with probability 1−1/p(n) the size of the queue would not
exceed O(log n) as required.

History independent hash tables The notion of history independent
[81],[71] arises in the setting where the data structure designer is concerned
with an adversary that has access to the actual memory representation of
the data structure, and the goal is to hide all information other than the
one exposed via the data structure’s interface. In the context of dictionaries
the goal is that the memory representation would not reveal any informa-
tion concerning the order in which the items were inserted or whether there
were items that were inserted and later removed. This situation may arise
for instance in the context of voting machines. Here we are concerned with
a variant called Strong History Independence that states that the memory
representation has a canonical form. In other words, it is completely deter-
mined by the set currently represented in the dictionary and a fixed amount
of initial randomness. An example of a strongly history independent im-
plementation of a dictionary is by keeping all items in a sorted array. The
problem with this solution of course is that the time complexity of opera-
tions is high. Next we will see a simple and efficient construction based on
Cuckoo hashing. For more details see [80]. A different construction based
on Linear Probing and that has a weaker notion of history independence
could be found in [55].

Our goal therefore is to describe the memory layout of the cuckoo hashing
tables and stash after each operation. An item x could potentially be placed
in either T0[h0(x)] or in T1[h1(x)]. To achieve strong history independence
there has to be a deterministic rule that assigns one of these locations to x.
The rule will be based on the shape and the members of the x’s component
in the cuckoo graph. Note that the cuckoo graph is fully determined by
the set of items S and the initial randomness encapsulated in the two hash
functions. We now describe these rules. We then show that these rules could

57

DRAFT 5 DICTIONARIES

be followed in a rather straight forward way. Let C be a component of the
cuckoo graph. There are 3 cases:

C is a tree: The number of edges (items) is one less than the number of
slots (nodes), so exactly one of the nodes remains vacant. Further,
the choice of the vacant node fully determines the placement of all the
items of the component and any one of the nodes could potentially
serve as the vacant one. Any arbitrary deterministic rule would work
but to be specific we determine that the node in C which is in table
T0 and of smallest index is the one to be left vacant.

C is unicyclic: Here all the nodes of the component must receive an item.
The only variance in placement arises by the placement of the items
that lie in the unique cycle of the component. There are two ways to
place those items, and we should pick one deterministically. We decide
(arbitrarily) that from the items that form the cycle, the item with
the smallest key is placed in table T0.

C has more than one cycle: Here the first decision to make is which
items to place in the stash. Any deterministic procedure would do.
For instance, iteratively place in the stash the item with smallest key
that corresponds to a cyclic edge. This is done until the component is
unicyclic, at which point the previous case applies.

Upon insertion these invariants could be maintained by scanning the
connected component in the cuckoo graph, i.e. in time O(|C|) which is
asymptotically similar to the standard cuckoo hashing dictionary. To see
that this is possible note that in the first case the item only needs to locate
the vacant location in its component, and in the second and third invariants
the insertion process needs to locate the cycles in the component.

Performing the Delete operation is slightly more subtle. It could be the
case that after the deletion a simple of the cuckoo graph starting from the
deleted item will not reach the location that (say) should now be vacant. To
fix this we have all the items of the connected component also hold pointers
and form a cyclic link list. This list could be traversed instead of the cuckoo
graph itself. This reduces the space utilization of the data structure to 0.25
under the conservative assumption that pointers take the same space as
keys. The missing details could be found in [80].

58

DRAFT 5 DICTIONARIES

5.3 Generalized Cuckoo Hashing and k-Orientability

There are two natural ways to generalize Cuckoo Hashing. The first is to
increase the number of hash function used from 2 to a general d > 1. This
is called the ”d-ary cuckoo hashing scheme” and was first studied in [45].
The second is to increase the capacity of a memory location (bin) so that
it can store more than one item. This is sometimes refered as ”blocked
cuckoo-hashing” and was first studied in [39], though the case the capacity
is 2 was examined in [87]. We remark that it is also possible to have the bins
overlap. This was shown in [65] to carry some advantages, but henceforth
we assume bins are distinct. These schemes could of course be combined,
hence we define the (d, k)-cuckoo scheme as one that uses d hash functions
and a capacity of k in each bin. In this terminology the standard cuckoo
hashing scheme described previously is the (2, 1)-scheme. The goal of these
schemes is to increase the space utilization of the data structure. While in
the vanila cuckoo hashing (2 + ε)m slots are needed to store m items, so
the space utilization is at most 0.5. In these schemes the number of slots
can be much closer to m and space utilization gets closer to 1. There are
two main questions that needs to be addressed. The first is how to insert
an item. In the (2, 1) an item that is evacuated from its slot has exactly
one other potential location, hence the insertion algorithm is self-prescribed.
Generally though an item which was evacuated may evacuate one of dk− 1
other items and the insertion algorithm needs to specify which one of those
to move. Second, it is desirable to quantify the tradeoff between d, k and
the actual space utilization obtained by the data structure.

5.3.1 Space Unitilization

Given a (d, k)-cuckoo scheme, let Am,n be the event it is possible to place m
items in the n bins (assuming the hash functions are fully random). Note
that in this notation the total number of memory slots is nk. A constant
cd,k is a threshold for the (d, k)-cuckoo placement scheme if:

lim
n→∞

Pr[Abcnc,n] =

{
0 if c < cd,k
1 if c > cd,k

In this terminology the space utilization of the scheme is cd,k/k and we have
already seen that c2,1 = 0.5. We note that it is not trivial a-priori that a
threshold exists.

An alternative way to phrase the problem is as a hypergraph orientability
problem. A k-orienting of a hypergraph is an assignment of each edge to

59

DRAFT 5 DICTIONARIES

one of its vertices so that each vertex is assigned at most k edges. In this
terminology the vertices represent the bins, the edges represent the balls and
the orientation of the edge indicates the assignment of the ball. Now the
offline (d, k) scheme is tantamount to a k-orienting of a hypergraph, where
each edge is of degree d, that is, spans d nodes. LetHn,m,d be all hypergraphs
with n nodes and m edges of degree d. The problem of assigning m balls to
n bins via a d, k-cuckoo scheme is equivalent (assuming the hash functions
are fully random) to the probability a uniformly sampled member of Hn,m,d
has a k-orientation.

The existence and characterization of thresholds was gradually discov-
ered in many papers [96], [21], [44], [33], [52], [47], we refrain from describing
the contribution of each one. Finally, a general solution is given in [46] and
[66], and asymptotically also in [53].

Theorem 5.10. For interegers d ≥ 3 and k ≥ 1, let ξ be the unique solution
of the equation

dk =
ξQ(ξ, k)

Q(ξ, k + 1)
, where Q(x, y) = 1− e−x

∑
j<y

xj

j!

and set

cd,k =
ξ

dQ(ξ, k)d−1

then

lim
n→∞

Pr[Hn,bcnc,d is k-orientable] =

{
0 if c < cd,k
1 if c > cd,k

In the table below we compute a few of the implied space utilizations for
the (d, k) cuckoo hashing schemes, up to a third digit rounding. In practice
an increase in d and k are not equivalent. Increasing d requires an additional
computation of hash function and one more random memory probe which is
likely to be a cache miss. On the other hand, a moderate increase in k may
come with almost no cost as all if the items in the bucket share the same
cache line. Thus, an appealing option in practice is setting d = 2 and k = 4
for a 0.96 memory utilization.

d\k 1 2 3 4

2 0.5 0.87 0.94 0.96
3 0.9178 0.97 0.98 0.999
4 0.9768 0.9982 0.9998 0.9999

60

DRAFT 5 DICTIONARIES

In a further generalization proposed in [53] and [66] they consider the case
where each hypergraph edge needs to be assigned to ` ≥ 1 of its vertices. In
data structure terminology this is equivalent to the requirement that each
item is replicated ` times, each replica to be placed in a different memory
locations. In this case as well, for every d, k and 1 ≤ ` < d a threshold exists
and memory utilization approaches 1 quickly as d, k increase.

It turns out the threshold for the cuckoo scheme (or for orientability)
is tightly related to that of cores. A k-core of a hypergraph is a maximum
subgraph where each node has degree at least k. The density of a graph is
the maximum ratio of edges to nodes taken over all induced subgraphs. The
following two theorems appear in [46] and establish the two bounds needed
to show that cd,k is a threshold. They generalize nicely the results for the
vanila version of cuckoo hashing. In that case we were concerned with cyclic
components which correspond to 2−cores.

Theorem 5.11. If c > cd,k, then with probability 1− o(1), the (k + 1)-core
of a hypergraph uniformly sampled from Hbcnc,n,d has density greater than
k.

Note that when the density is greater than k the pigeonhole principle
implies there cannot be a k orientation. Alternately, in the data structure
language, this implies that there is a set of t bins that receive more than kt
balls, and therefore there cannot be a placement of these balls respecting a
limit of k on the capacity of each bin.

Theorem 5.12. If c < cd,k, then with probability 1− o(1), all subgraphs of
a hypergraph uniformly sampled from Hbcnc,n,d have density smaller than k.

Consider a bipartite graph with the m items on the left and the nk
memory slots on the right, and place an edge whenever a memory slot is
a valid placement for an item. Note that Hall’s theorem implies that if
the density of the hypergraph is smaller than k then there is a left perfect
matching that matches all the m items.

Theorems 5.11 and 5.12 highlight a fundamental difference between the
(2, 1) case and the remaining cases. In the (2, 1) case, while below the
threshold all connected components are either trees or unicycles, and we
know they are small in size as well. the components are small in size as
well. The fact the subgraphs we care about are the components themselves
simplifies the analysis and allows for the simple constructions of explicit
hash functions and the history independent scheme. On the other hand
when d ≥ 3 or k ≥ 2 there objects of interest are cores and subgraphs,

61

DRAFT 5 DICTIONARIES

and these may lie within a large connected component. This explains the
difficulty in analyzing insertion algorithms and explicit hash functions.

5.3.2 Insertion Algorithms

The previous section considered the space utilization without specifying a
solution to the computational problem of actually finding the allocation.
Clearly in the offline case this is simply a matching problem. The interesting
questions are whether it is possible to find a good online algorithm where
the items arrive one by one, and whether there exists a linear time offline
algorithm.

The (d, 1) scheme was first suggested in [45] under the name d−ary
cuckoo hashing. In that work (which predated Theorem 5.10) they show
that for a space utilization of 1 − ε it is sufficient to set d = O(ln(1/ε)).
Theorem 5.10 implies this is tight up to multiplicative constants. They
suggested the following natural insertion algorithm: consider a bipartite
graph where the left side is associated with items and the right side with
memory locations. We place an edge (u, b) if b is one of u’s d valid memory
locations. Further, if u is placed in b we orient the edge towards u, otherwise
it is oriented towards b. An online insertion algorithm can scan this graph
starting from u until it finds an empty memory location. A natural algorithm
to scan this graph is a BFS, where one of the advantages is that the actual
evictions (which presumable are a costly operation) would occur along a
shortest path. The paper proves that the expected number of memory probes
the BFS algorithm performs is some constant exponential in 1/ε.

In [39] they propose and analyze the (2, k)-scheme, under the name
blocked-cuckoo-hashing. Similarly, they identify the threshold and show
that setting k ≥ 1 + ln(1/ε)

1−ln 2 is sufficient for a space utilization of 1/(1 + ε).
While asymptotically this is similar to that of the (d, 1) scheme, as we men-
tioned before, in practice an increase in k is less costly than an increase of
d. They show that if k is larger, but still O(ln(1/ε)) then a BFS insertion
algorithm runs in constant time on expectation, again with the constant
exponential in 1/ε.

A natural algorithm for both cases is the Random Walk algorithm. In
that algorithm when an item needs to be evacuated, a random item out
of the dk items is picked and is moved to a random location out of the
remaining dk − 1 locations. This is tantamount to random walk on the
graph as described previously. This algorithm was proposed already in [45]
and [39] but eluded analysis for a long time. The first analysis for the (d, 1)
scheme was given in [50] where is is shown that the expected insertion time

62

DRAFT 5 DICTIONARIES

of the random walk algorithm is at most log2+δ(d) n where δ(d) → 0 as
d increases. The bound holds however only if d is sufficiently large, even
compared to the space utilization of the scheme. This result was improved
in two ways. In [48] essentially the same bound is shown, but this time it is
shown to hold when d is down all the way to the space utilization threshold.
In [51] it is shown that the expected insertion time is constant, but d has to

be in the order of log 1/ε
ε , while recall that the threshold for a space utilization

of 1− ε is roughly log 1/ε. They also show that the maximum insertion time
is bounded by logO(1) n w.h.p.

A third interesting online insertion algorithm was suggested in [59] which
he calls the Local Search algorithm, which is also aimed at the (d, 1) case.
In this algorithm each bin b is given an integer label L(b) initially set to
zero. Given an item x let b1, . . . , bd be its d possible locations. Let bi be a
bin with minimal label among those d bins (ties broken arbitrarily). The
algorithm proceeds by doing the following two steps:

1. L(bi) ← minj 6=i L(bj) + 1. In words: The label of L(bi) is updated to
be one more than the smallest label of the other d− 1 labels.

2. The item x is placed in bin bi. If there is an item already there it is
evacuated from the bin and reinserted using the same procedure.

The paper proves two statements. The fist is that if m items could be
placed in n bins then no label would ever exceed n−1. This means that the
algorithm always finds a placement if one exists and has a worst case running
time of O(n2). Further, a label that reaches a value of n is a certificate that
no placement exists. Secondly, the paper proves that if the d locations are
chosen randomly then with high probability it takes O(n) time to place m
items, even as m gets close to c3,1n.

There is no known high probability bound on the insertion time or a
single item, but experiments reported in [59] suggest the maximum to be
logarithmic, and significantly smaller than the maximum of a random walk
algorithm. Further, the total insertion time of items is a full order of mag-
nitude smaller than random walk.

The algorithm comes with the additional cost of storing the labels. It
is shown that with high probability the labels do not exceed O(log n) thus
this algorithm presents good trade-offs for most applications.

5.4 Linear Probing

Perhaps the most common hashing technique is Linear Probing. It was
invented in the 50’s and was first analyzed by Knuth in 1963 in one of the

63

DRAFT 5 DICTIONARIES

true classics of algorithm analysis [63]. In this scheme an array T of length
n should store m items taken from universe U . The load m/n is denoted
by α. The scheme uses a hash function h : U → [n] which for now is
assumed to be fully random. Item x is placed in the first free cell of the list
{T [h(x)], T [h(x) + 1], T [h(x) + 2], . . . } where additions are done modulo n.
The lookup follows the same rule, the array is searched from T [h(x)] until
either x is located, or a free cell is encountered, in which case x is not in the
dictionary. Deletions cannot simply remove an item from the array, because
this may invalidate the correctness of the lookup operation. Deletions need
to compact the remainder if the run starting form the removed item. The
details of how to do that are straight forward and omitted here.

The scheme is popular mainly due to the simplicity of the algorithm, but
it turns out that it is very fast in practice. From a theoretical standpoint the
running time clearly depends on the lengths of the ‘runs’ of occupied cells
in T , these runs may clearly be larger than 2, thus the number of probes
needed for a search may be higher than in cuckoo hashing. Further, it would
be longer than the uniform probing scheme, where instead of scanning the
array linearly, the order of scan is determined by some random permuta-
tion indexed by the query. In practice however there are two properties of
computer architecture that play to Linear Probing’s advantage. The first is
memory locality. Since the probes of the scheme are consecutive elements in
an array, the first probe already brings into the memory cache the remain-
ing probe and thus if the run is not very long, the cost in time is effectively
closer to that of one probe. Second, even if the run happens to be long,
modern CPU’s would often identify a linear memory scan and pre-fetch the
next probe into the cache, again effectively reducing the running time.

Note that a cell T [i] is empty iff for every k the number of items mapped
to locations k . . . i is less than i− k. It also implies that the set of occupied
cells depends only upon the set of items that is inserted and is not a function
of the order of insertion. We call a set of consecutive occupied cells a run.
Let `1, `2, . . . be the lengths of the runs, so that

∑
`i = m.

Lemma 5.13. The expected number of probes in an unsuccessful search,
assuming the searched key is mapped to a random location in the table is at
most 1 + 1

n

∑ `i(`i+1)
2

Proof. Proof is done by linearity of expectation. With probability 1− m
n the

query is mapped to an empty slot and the search takes a single probe. With
probability `i/n the query is mapped to the i’th run. Conditioned on this
the number of probes is the length of the remaining run which is (`i + 1)/2,
plus one more probe at the empty cell to its right. So the total expected

64

DRAFT 5 DICTIONARIES

number of probes is `i+1
2 + 1 and summing up the expectation is

1− m

n
+

1

n

∑(
`i(`i + 1)

2
+ 1

)
≤ 1 +

1

n

∑ `i(`i + 1)

2

Recall that α := m/n denotes the load of the table.

Theorem 5.14 (Knuth). Assuming the hash function is fully random, the
expected time to insert an item, which is also the expected time for an un-
successful lookup operation is

1

2

(
1 +

1

(1− α)2

)
The expected time for the successful lookup of a randomly selected item from
the table is

1

2

(
1 +

1

1− α

)
We show a different analysis for linear probing, originally in [85], and

then simplified and a bit extended in [92]. The main advantage of this anal-
ysis is that it removes the random hashing assumption and replaces it with
a 5−wise independence family. In fact, even 4−wise independence suffices
for an amortized bound. This provides an explicit hash function family in
the spirit of the classical works of Carter and Wegman [22], where each hash
function could be indexed using O(log n) bits and could be evaluated in O(1)
time in the RAM word model. For sake of readability we will be loose with
the dependency on α.

Following the exposition in [92] we make a few simplifying assumptions,
first we assume that n the size of the table is a power of two. Second, we
assume that α = m/n ≤ 2/3. So we will show a bound of O(n) on the total
running time without flushing out the dependency on α. On the other hand,
the bound will hold for 4−wise independent families as well.

For an item x, h(x) is the hash location in the table, x itself of course
may be placed to the right of h(x). In order to reason about the allocation
of items into the memory arrays it is convenient to build a binary tree of
depth log n whose leaves are the memory slots. We stress that this tree is
not a part of the data structure but just a logical construct which is part of
the proof. It is convenient to measure height from the leaves up, so a node
of height i is the ancestor of 2i leaves which are associated with consecutive

65

DRAFT 5 DICTIONARIES

locations in the table. We call these leaves the interval of the node. Since
the hash function is assumed to be uniform over the array, a node at height i
is expected to have α2i ≤ 2

32i items hashed to its interval. We say the node
is crowded if more than 3

42i are hashed to its interval. Note that the actual
location in which the items are finally placed may be outside that interval.

Lemma 5.15. Say after placing n items there is a run of length ` > 2i,
i ≥ 3. Then there is a crowded node at height i− 2 with an interval whose
last memory location is part of the run.

Proof. Note that the interval of a node at height i−2 is of size 2i−2 so there
are at least 4 nodes of height i−2 with their last node in the run, in fact for
3 of those nodes their entire interval is contained in the run, only the first of
these nodes may only intersect the run at the suffix of its interval. We call
these nodes v1, . . . , v4. Assume for contradiction they are all not crowded.
We count the total number of items placed in the run. Just before the run,
there is an empty cell. Thus, there are no items that are placed in the run
from the left of v1, and v1 contributes at most (3/4)2i−2 items to the run.
Since v2, v3, v4 are also not crowded, each of them has at most (3/4)2i−2

items mapped, so each can absorb at least (1/4)2i−2 additional items. It
must be therefore that the run ends at or before the interval of v4 and its
length is less than 4 · 2i−2 = 2i contradicting the assumption on the length
of the fun.

The total insertion time of n items is O(
∑
`2i). The runs where i ≤ 2 can

contribute at most 4n. We have just seen that a longer run has a crowded
ancestor at height 2i−2 whose last leaf is part of the run, so a crowded node
is associated with at most one run. We have therefore

E
[∑

`2i

]
≤ 4n+O

(∑
v

22·height(v) Pr[v is crouded]

)

There are n/2i nodes at height i, so this is

O

(
logn∑
i=0

n

2i
22i Pr[node of height i is crouded]

)

= n ·O

(
logn∑
i=0

2i Pr[v node of height i is crouded]

)
(24)

The key for the analysis therefore is an effective bound on the probability
a node is crowded, and in fact, any hash function with strong enough bound

66

DRAFT 5 DICTIONARIES

would suffice. Denote the probability a node of height i is crowded by γi.
As a first example consider a fully random function. In this case the load
of v is distributed B(m, 2i/n). Cherrnoff’s bound implies that there is some
constant c so that γi ≤ exp(−c2i) which means that (24) is bounded by
O(n).

5.4.1 Five-wise independent hash functions

The key observation is that 24 could be bounded by O(n) even when the hash
function is not fully random, but rather drawn from a family of constant
independence.

Definition 10. Let H be a family of hash functions from U to V. We
say H is k-wise independent if for every distinct x1, . . . , xk ∈ U , when h
is a function uniformly sampled from H, the variables h(x1), . . . , h(xk) are
independent.

Let y1, . . . , yn be a set of k−wise independent variables, let Y =
∑
yi and

µ = E[Y]. By the k independence it follows that E[(Y −µ)k] = O(µk/2). We
use this to compute γi which is the probability a node of height i is crowded.
Given a node at height i, let yj be the probability the j’th item was hashed

to the node’s interval and Y =
∑
yj . Recall that µ = E[Y] ≤ 2/3

2

i

γi = Pr[Y ≥ 3

4
2i] ≤ Pr[|Y − µ| ≥ 3

24
µ]

≤ Pr

[
(|Y − µ|)k ≥ (

3

24
µ)k
]

≤ O(2−ik/2)

where the last inequality is an application of Markov’s inequality and the
bound on the k’th moment of Y . Plugging this in 24 implies that the ex-
pected time for n insertions is O(n) whenever k ≥ 4, and that it is O(n log n)
even when H is only pair-wise independent.

A slightly sharper bound was shown in [85]:

Theorem 5.16. Let H be a 5-wise independent from U → [n] .When linear
probing is used with a hash function chosen uniformly at random from H,
the expected total number of probes made by a sequence of n insertions into
an empty table is less than

n ·
(

1 +O

(
α

(1− α)2

))

67

DRAFT 5 DICTIONARIES

Next we consider lookups. Consider an item x and its hash location
h(x). If h(x) is in a run of length ` then the lookup time is O(`). Now, say
2i ≤ ` ≤ 2i+2. We know already that at least one of the first 4 nodes at
level i− 2 whose intervals intersect the run are crowded. The hash location
h(x) could be at the beginning of the run or the end of it, so we conclude
that conditioned on h(x) and on h(x) being part of a run of length `, it must
hold that at least one of 12 nodes at height i − 2 are crowded. These 12
nodes are those that correspond to all possible locations of h(x) within the
run. If i ≤ 2 lookup time is at most 3, so

E[` | h(x)] ≤ 3 + 12
∑
i≥2

2i+1 · γ′i−2 (25)

where γ′i as the probability a node of height i is crowded conditioned on
h(x). The conditioning on h(x) takes one degree of freedom away from the
hash function, the remaining values are k − 1 independent. In other words:

γ′i ≤ γi−1 = O(2−i(k−1)/2)

Plugging back in (25) we have that the expected time for a lookup is O(
√
n)

when k = 2, O(log n) when k = 4 and remarkably O(1) when k ≥ 5.

5.5 Explicit hash functions

Section 5.4.1 is an example where the assumption the data structure uses a
fully random hash function is removed. This assumption is one of the main
discrepancies between the theoretical model and practice where the space
it takes to represent the function and the time it takes to compute it must
be taken into account. As such, specifying an explicit hash function family
had been a prime goal of data-structure research from its beginning. A full
review of this line of research is beyond the scope of this manuscript and
deserves a separate survey. Below is a brief presentation of the main papers
that may serve as a starting point for the interested reader.

The starting point is likely the seminal work of Carter and Wegman [22],
where k−wise independent functions were introduced. The notion of lim-
ited independence turned out to be very useful, some dictionaries maintain
their guarantees even when the hash function is drawn from such a family
with k = O(1), including for instance [49], [35] and [18]. As the level of
independence k increases more applications could be found. Simple chain-
ing could be implemented with k = O(log n). It was observed in [8] that
the proof of ‘vanila’ cuckoo hashing in Section 5.1 (the (2, 1) scheme) mea-
sures the probability of occurrence of structures of size O(s log n). A careful

68

DRAFT 5 DICTIONARIES

observation reveals that setting k = O(s log n) suffices for essentially the
same analysis to go through. If k is allowed to increase to k = logO(1)(n)
then more applications come under the fold via a more generic proof tech-
nique. The technique is based on a result by Braverman [16] that showed
that AC0 circuits of at most quasi-polynomial size cannot distinguish (with
high probability) between the case their input is truly random to the case
the input is drawn from a k-independent distribution where k = logO(1) n.
AC0 are the family of boolean circuits of constant depth and unlimited fan
in. It was observed in [6] that Braverman’s result implies that k−wise in-
dependent functions could replace truly random hash functions whenever
the failure of the data structure under the full randomness assumption im-
plies with high probability the occurrence of some‘bad’ event, and further
that the bad event could be identified by an AC0 circuit of quasi-polynomial
size. They demonstrated this technique by applying if for the de-amortized
cuckoo hashing (see Section 5.2). In this case the bad event is the existence
of some dense sub-graph of the cuckoo-graph. The key observation is that
the dense sub graphs are of logarithmic size, and therefore there are a quasy-
polynomial number of such sub graphs, so their existence could be checked
in parallel by a constant depth and quasi-polynomial size circuit.

There are many ways to construct (almost) k-wise independent functions
c.f. [22], [104], [4], [3], [1], [79] [31]. These constructions arise in many
different contexts such as error correcting codes and epsilon biases spaces.
See for instance [5]. A canonical one is based on evaluating a degree k − 1
polynomial. Storing a degree k− 1 polynomial entails storing k coefficients,
so it takes O(k) space (in the word RAM model). Computing the function
is done by evaluating the polynomial on the key, which takes O(k) time.
Thus, when used for many of the constructions for dictionaries that we
have seen, if k is super constant, the time to compute the hash function
dominates the running time of the insertion or lookup algorithms. It is
therefore crucial to use a hash function that could be evaluated in O(1) time.
Indeed, this problem did not go unnoticed, an intriguing line of research is
aimed at finding (almost) k−wise independent families for large k where
the evaluation time is O(1), at the cost of using much more space. The
first example of such a family was given by Siegel in [97]. It shows a family
of functions that are almost nδ independent using nδ

′
space where δ, δ′ <

1. Siegel’s construction is optimal asymptotically but the constants are
enormous. A much more efficient construction is given in [25] and is based
on tabulation.

It is worth noting that even for k = 5, evaluating a polynomial hash
function would in practice be more expensive than a lookup in the table,

69

DRAFT 5 DICTIONARIES

the reason being in practice multiplication is fairly expensive. So it is worth
while to find more efficient constructions for this case. A construction based
on a simple version of tabulated hashing was shown in [102] and for larger
k in [62]. Tabulated hashing essentially requires just reading and xoring a
few locations in the memory indexed by the key itself.

A slightly different notion of limited independence is that of simulated
randomness. In this setting for every set of n items from the universe
x1, . . . xn, the values h(x1), . . . , h(xn) are fully random with probability
1 − 1/poly(n). With probability 1/poly(n) this particular set of keys are
not good for the sampled hash function and so these values may be corre-
lated in an arbitrary way. Clearly a construction with this property would
require linear space. Surprisingly in [84] and [38] it was shown that families
with this property could be evaluated in constant time. Simulated ran-
domness is useful not only when the cost of linear space is acceptable. A
standard ’trick’ is to partition the set of items to a sub linear of sets with
o(n) in each set, and then using the same hash function across all sets [36].

While the notion of limited independence is appealing in its generality,
specialized hash functions turn to be very efficient for specific data struc-
tures. Simple tabulated hashing and some of its variants [88], [91], [28] are
only 3−wise independent yet could be used for linear probing, the 2-coice
scheme and a simple chained dictionary. Other examples include [8] for
cuckoo hashing and [106] for d-Left hashing.

Another goal is to reduce space. For instance, for simple chaining (the
one choice scheme), fully random functions could be replaced by O(log n)-
wise independent functions. This takes O(log n) space. A hash function
family with similar performance and O(log logn) space was shown in [24].
In [94] it was shown that this family could be used for some versions of
cuckoo hashing as well. In [70] it was shown that these functions could
also be evaluated in O(log logn) time. An intriguing open question [2] asks
whether there is a family of hash functions in which a hash function could be
represented in O(1) space, and yet could be used in the one choice scheme
with essentially the same guarantees as a fully random function.

It was observed in [94] that whenever the ‘misbehavior’ of a fully random
hash function can be characterized with high probability by a bad event,
and this event could be detected by an algorithm with memory s, the fully
random hash function could be replaced by one based on a pseudo-random
generators for space bounded computation. This observation is similar to
the one made previously regarding AC0 circuits. They use the generators
of [83] and [69] to build a hash function with O(

√
log n) space for the one

choice scheme.

70

DRAFT 5 DICTIONARIES

A surprising fact is that in practice and in experiments it is often the
case that very simple hash functions, say a simple linear function, are just
as good as the pseudo-random functions with the provable guarantees. A
possible explanation for this phenomena was given in [76]. They show that if
the keys themselves have sufficient min-entropy than even very simple hash
functions could be used. The tool they use is the leftover hash lemma which
states that pairwise independent functions are in fact some sort of weak
extractor. The main observation is that the leftover hash lemma implies
that if the keys are drawn from some weak distribution, the output of a
pairwise independent function is close enough to that of a fully random
function so that the guarantees of full randomness still hold. The negative
results of [37] demonstrate that in common cases where the keys have some
structure and little entropy, pairwise independent can behave poorly, so the
results in [76] should not be taken as a generic justification for using such
weak functions.

71

DRAFT REFERENCES

References

[1] Noga Alon, László Babai, and Alon Itai. A fast and simple random-
ized parallel algorithm for the maximal independent set problem. J.
Algorithms, 7(4):567–583, 1986.

[2] Noga Alon, Martin Dietzfelbinger, Peter Bro Miltersen, Erez Petrank,
and Gábor Tardos. Linear hash functions. J. ACM, 46(5):667–683,
September 1999.

[3] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple
construction of almost k-wise independent random variables. Random
Struct. Algorithms, 3(3):289–304, 1992.

[4] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Ad-
dendum to ”simple construction of almost k-wise independent random
variables”. Random Struct. Algorithms, 4(1):119–120, 1993.

[5] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley,
1992.

[6] Yuriy Arbitman, Moni Naor, and Gil Segev. De-amortized cuckoo
hashing: Provable worst-case performance and experimental results.
In Automata, Languages and Programming, 36th International Collo-
quium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings,
Part I, pages 107–118, 2009.

[7] Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing:
Constant worst-case operations with a succinct representation. In 51th
Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 787–796,
2010.

[8] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. Explicit
and efficient hash families suffice for cuckoo hashing with a stash.
Algorithmica, 70(3):428–456, 2014.

[9] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced
allocations. SIAM J. Comput., 29(1):180–200, September 1999.

[10] Tugkan Batu, Petra Berenbrink, and Colin Cooper. Chains-into-bins
processes. J. Discrete Algorithms, 14:21–28, 2012.

72

DRAFT REFERENCES

[11] Petra Berenbrink, André Brinkmann, Tom Friedetzky, and Lars Nagel.
Balls into non-uniform bins. J. Parallel Distrib. Comput., 74(2):2065–
2076, 2014.

[12] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold
Vöcking. Balanced allocations: The heavily loaded case. SIAM J.
Comput., 35(6):1350–1385, 2006.

[13] Petra Berenbrink, Tom Friedetzky, Zengjian Hu, and Russell A.
Martin. On weighted balls-into-bins games. Theor. Comput. Sci.,
409(3):511–520, 2008.

[14] Petra Berenbrink, Kamyar Khodamoradi, Thomas Sauerwald, and
Alexandre Stauffer. Balls-into-bins with nearly optimal load distri-
bution. In 25th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’13, Montreal, QC, Canada - July 23 - 25, 2013,
pages 326–335, 2013.

[15] Paul Bogdan, Thomas Sauerwald, Alexandre Stauffer, and He Sun.
Balls into bins via local search. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 16–34, 2013.

[16] Mark Braverman. Polylogarithmic independence fools ac0 circuits. J.
ACM, 57(5):28:1–28:10, June 2008.

[17] Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun.
Balls into bins via local search: cover time and maximum load.
In Ernst W. Mayr and Natacha Portier, editors, 31st International
Symposium on Theoretical Aspects of Computer Science (STACS
2014), volume 25 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 187–198, Dagstuhl, Germany, 2014. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[18] Andrei Z. Broder and Anna R. Karlin. Multilevel adaptive hashing. In
Proceedings of the First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’90, pages 43–53, Philadelphia, PA, USA, 1990.
Society for Industrial and Applied Mathematics.

[19] Andrei Z. Broder and Michael Mitzenmacher. Using multiple hash
functions to improve IP lookups. In Proceedings IEEE INFOCOM
2001, The Conference on Computer Communications, Twentieth An-
nual Joint Conference of the IEEE Computer and Communications

73

DRAFT REFERENCES

Societies, Twenty years into the communications odyssey, Anchorage,
Alaska, USA, April 22-26, 2001, pages 1454–1463, 2001.

[20] John Byers, Jeffrey Considine, and Michael Mitzenmacher. Simple
load balancing for distributed hash tables. In IPTPS, pages 80–87,
2002.

[21] Julie Anne Cain, Peter Sanders, and Nicholas C. Wormald. The ran-
dom graph threshold for k -orientiability and a fast algorithm for op-
timal multiple-choice allocation. In Proceedings of the Eighteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007,
New Orleans, Louisiana, USA, January 7-9, 2007, pages 469–476,
2007.

[22] J.Lawrence Carter and Mark N. Wegman. Universal classes of hash
functions. Journal of Computer and System Sciences, 18(2):143 – 154,
1979.

[23] Cassandra. Apache. http://cassandra.apache.org/.

[24] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and
bins: Smaller hash families and faster evaluation. SIAM J. Comput.,
42(3):1030–1050, 2013.

[25] Tobias Christiani, Rasmus Pagh, and Mikkel Thorup. From indepen-
dence to expansion and back again. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 813–820, 2015.

[26] Artur Czumaj and Volker Stemann. Randomized allocation processes.
In 38th Annual Symposium on Foundations of Computer Science,
FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, pages
194–203, 1997.

[27] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and
Mikkel Thorup. Hashing for statistics over k-partitions. In IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015, pages 1292–1310, 2015.

[28] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and
Mikkel Thorup. The power of two choices with simple tabulation. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, pages 1631–1642, 2016.

74

DRAFT REFERENCES

[29] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s
highly available key-value store. SIGOPS Oper. Syst. Rev., 41(6):205–
220, October 2007.

[30] Luc Devroye and Pat Morin. Cuckoo hashing: Further analysis. In-
formation Processing Letters, 86:215–219, 2003.

[31] Martin Dietzfelbinger. Universal hashing and k-wise independent ran-
dom variables via integer arithmetic without primes. In STACS 96,
13th Annual Symposium on Theoretical Aspects of Computer Science,
Grenoble, France, February 22-24, 1996, Proceedings, pages 569–580,
1996.

[32] Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas Pip-
penger. Polynomial hash functions are reliable (extended abstract). In
Proceedings of the 19th International Colloquium on Automata, Lan-
guages and Programming, ICALP ’92, pages 235–246, London, UK,
UK, 1992. Springer-Verlag.

[33] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, An-
drea Montanari, Rasmus Pagh, and Michael Rink. Tight thresholds for
cuckoo hashing via XORSAT. In Automata, Languages and Program-
ming, 37th International Colloquium, ICALP 2010, Bordeaux, France,
July 6-10, 2010, Proceedings, Part I, pages 213–225, 2010.

[34] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new uni-
versal class of hash functions and dynamic hashing in real time. In
Proceedings of the 17th International Colloquium on Automata, Lan-
guages and Programming, ICALP ’90, pages 6–19, London, UK, UK,
1990. Springer-Verlag.

[35] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm
Meyer auf der Heide, Hans Rohnert, and Robert Endre Tarjan. Dy-
namic perfect hashing: Upper and lower bounds. SIAM J. Comput.,
23(4):738–761, 1994.

[36] Martin Dietzfelbinger and Michael Rink. Applications of a splitting
trick. In Proceedings of the 36th International Colloquium on Au-
tomata, Languages and Programming: Part I, ICALP ’09, pages 354–
365, Berlin, Heidelberg, 2009. Springer-Verlag.

75

DRAFT REFERENCES

[37] Martin Dietzfelbinger and Ulf Schellbach. On risks of using cuckoo
hashing with simple universal hash classes. In Proceedings of the Twen-
tieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’09, pages 795–804, Philadelphia, PA, USA, 2009. Society for Indus-
trial and Applied Mathematics.

[38] Martin Dietzfelbinger and Philipp Woelfel. Almost random graphs
with simple hash functions. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, June 9-11, 2003, San Diego,
CA, USA, pages 629–638, 2003.

[39] Martn Dietzfelbinger and Christoph Weidling. Balanced allocation
and dictionaries with tightly packed constant size bins. Theoretical
Computer Science, 380(1-2):47–68, 2007.

[40] Gregory Dresden and Du Zhaohui. A simplified binet formula for k-
generalized fibonacci numbers. Journal of Integer Sequences, 17, 2014.

[41] Michael Drmota and Reinhard Kutzelnigg. A precise analysis of cuckoo
hashing. ACM Trans. Algorithms, 8(2):11, 2012.

[42] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Mea-
sure for the Analysis of Randomized Algorithms. Cambridge University
Press, New York, NY, USA, 1st edition, 2009.

[43] Arnold I. Dumey. Indexing for rapid random access memory systems.
Computers and Automation, 12(5):6–9, 1956.

[44] Daniel Fernholz and Vijaya Ramachandran. The k -orientability
thresholds for Gn, p . In Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans,
Louisiana, USA, January 7-9, 2007, pages 459–468, 2007.

[45] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis.
Space efficient hash tables with worst case constant access time. The-
ory Comput. Syst., 38(2):229–248, 2005.

[46] Nikolaos Fountoulakis, Megha Khosla, and Konstantinos Panagiotou.
The multiple-orientability thresholds for random hypergraphs. In Pro-
ceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, San Francisco, California, USA,
January 23-25, 2011, pages 1222–1236, 2011.

76

DRAFT REFERENCES

[47] Nikolaos Fountoulakis and Konstantinos Panagiotou. Sharp load
thresholds for cuckoo hashing. Random Struct. Algorithms, 41(3):306–
333, 2012.

[48] Nikolaos Fountoulakis, Konstantinos Panagiotou, and Angelika Ste-
ger. On the insertion time of cuckoo hashing. SIAM J. Comput.,
42(6):2156–2181, 2013.

[49] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a
sparse table with 0(1) worst case access time. J. ACM, 31(3):538–544,
June 1984.

[50] Alan Frieze, Páll Melsted, and Michael Mitzenmacher. An analysis
of random-walk cuckoo hashing. SIAM J. Comput., 40(2):291–308,
March 2011.

[51] Alan M. Frieze and Tony Johansson. On the insertion time of random
walk cuckoo hashing. CoRR, abs/1602.04652, 2016.

[52] Alan M. Frieze and Páll Melsted. Maximum matchings in random bi-
partite graphs and the space utilization of cuckoo hash tables. Random
Struct. Algorithms, 41(3):334–364, 2012.

[53] Pu Gao and Nicholas C. Wormald. Orientability thresholds for random
hypergraphs. Combinatorics, Probability & Computing, 24(5):774–
824, 2015.

[54] P. Brighten Godfrey. Balls and bins with structure: Balanced alloca-
tions on hypergraphs. In Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’08, pages 511–517,
Philadelphia, PA, USA, 2008. Society for Industrial and Applied Math-
ematics.

[55] Michael Goodrich, Evgenios Kornaropoulos, Michael Mitzenmacher,
and Roberto Tamassia. More practical and secure history-independent
hash tables. In European symposium on Research in Computer Secu-
rity, 2016.

[56] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the world wide
web. In Proceedings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, pages 654–663, New York, NY,
USA, 1997. ACM.

77

DRAFT REFERENCES

[57] Richard M. Karp, Michael Luby, and Friedhelm Meyer auf der Heide.
Efficient pram simulation on a distributed memory machine. In Pro-
ceedings of the Twenty-fourth Annual ACM Symposium on Theory of
Computing, STOC ’92, pages 318–326, New York, NY, USA, 1992.
ACM.

[58] Krishnaram Kenthapadi and Rina Panigrahy. Balanced allocation on
graphs. In Proceedings of the Seventeenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2006, Miami, Florida, USA,
January 22-26, 2006, pages 434–443, 2006.

[59] Megha Khosla. Balls into bins made faster. In Algorithms - ESA
2013 - 21st Annual European Symposium, Sophia Antipolis, France,
September 2-4, 2013. Proceedings, pages 601–612, 2013.

[60] Adam Kirsch and Michael Mitzenmacher. Using a queue to de-
amortized cuckoo hashing in hardware. In the Forty Fifth Annual
Allerton Conference on Communication, Control, and Computing,
2007.

[61] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust
hashing: Cuckoo hashing with a stash. SIAM J. Comput., 39(4):1543–
1561, December 2009.

[62] Toryn Qwyllyn Klassen and Philipp Woelfel. Independence of
tabulation-based hash classes. In LATIN 2012: Theoretical Informat-
ics - 10th Latin American Symposium, Arequipa, Peru, April 16-20,
2012. Proceedings, pages 506–517, 2012.

[63] Donald Knuth. Notes on open adressing.
http://citeseer.ist.psu.edu/knuth63notes.html, 1963.

[64] Reinhard Kutzelnigg. A further analysis of cuckoo hashing with a stash
and random graphs of excess r. Discrete Mathematics & Theoretical
Computer Science, 12(3):81–102, 2010.

[65] Eric Lehman and Rina Panigrahy. 3.5-way cuckoo hashing for the
price of 2-and-a-bit. In Amos Fiat and Peter Sanders, editors, ESA,
volume 5757 of Lecture Notes in Computer Science, pages 671–681.
Springer, 2009.

[66] Marc Lelarge. A new approach to the orientation of random hyper-
graphs. In Proceedings of the Twenty-Third Annual ACM-SIAM Sym-

78

DRAFT REFERENCES

posium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January
17-19, 2012, pages 251–264, 2012.

[67] Daniel Lemire. The universality of iterated hashing over variable-
length strings. Discrete Applied Mathematics, 160(4-5):604–617, 2012.

[68] Christoph Lenzen and Roger Wattenhofer. Tight bounds for parallel
randomized load balancing: Extended abstract. In Proceedings of the
Forty-third Annual ACM Symposium on Theory of Computing, STOC
’11, pages 11–20, New York, NY, USA, 2011. ACM.

[69] Chi-Jen Lu. Improved pseudorandom generators for combinatorial
rectangles. Combinatorica, 22(3):417–434, 2002.

[70] Raghu Meka, Omer Reingold, Guy N. Rothblum, and Ron D. Roth-
blum. Fast pseudorandomness for independence and load balancing
- (extended abstract). In Automata, Languages, and Programming -
41st International Colloquium, ICALP 2014, Copenhagen, Denmark,
July 8-11, 2014, Proceedings, Part I, pages 859–870, 2014.

[71] Daniele Micciancio. Oblivious data structures: Applications to cryp-
tography. In Proceedings of the Twenty-ninth Annual ACM Sympo-
sium on Theory of Computing, STOC ’97, pages 456–464, New York,
NY, USA, 1997. ACM.

[72] Michael Mitzenmacher. The Power of Two Choices in Randomized
Load Balancing. PhD thesis, Harvard University, 1991.

[73] Michael Mitzenmacher. Balanced allocations and double hashing. In
26th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’14, Prague, Czech Republic - June 23 - 25, 2014, pages 331–
342, 2014.

[74] Michael Mitzenmacher, Andra W. Richa, and Ramesh Sitaraman. The
power of two random choices: A survey of techniques and results. In
in Handbook of Randomized Computing, pages 255–312. Kluwer, 2000.

[75] Michael Mitzenmacher and Eli Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cambridge Uni-
versity Press, New York, NY, USA, 2005.

[76] Michael Mitzenmacher and Salil Vadhan. Why simple hash functions
work: Exploiting the entropy in a data stream. In Proceedings of the

79

DRAFT REFERENCES

Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’08, pages 746–755, Philadelphia, PA, USA, 2008. Society for
Industrial and Applied Mathematics.

[77] Michael Mitzenmacher and Berhold Vöcking. The asymptotics of se-
lecting the shortest of two, improved. In Proceedings of the 37th An-
nual Allerton Conference on Communication, Control, and Comput-
ing, pages 326–327, 1999.

[78] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[79] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient
constructions and applications. SIAM J. Comput., 22(4):838–856,
1993.

[80] Moni Naor, Gil Segev, and Udi Wieder. History-independent cuckoo
hashing. In Automata, Languages and Programming, 35th Interna-
tional Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008,
Proceedings, Part II - Track B: Logic, Semantics, and Theory of Pro-
gramming & Track C: Security and Cryptography Foundations, pages
631–642, 2008.

[81] Moni Naor and Vanessa Teague. Anti-persistence: History indepen-
dent data structures. In Proceedings of the Thirty-third Annual ACM
Symposium on Theory of Computing, STOC ’01, pages 492–501, New
York, NY, USA, 2001. ACM.

[82] Moni Naor and Udi Wieder. Novel architectures for p2p applications:
The continuous-discrete approach. In Proceedings of the Fifteenth
Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’03, pages 50–59, New York, NY, USA, 2003. ACM.

[83] Noam Nisan and David Zuckerman. Randomness is linear in space. J.
Comput. Syst. Sci., 52(1):43–52, February 1996.

[84] Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and
optimal space. SIAM J. Comput., 38(1):85–96, 2008.

[85] Anna Pagh, Rasmus Pagh, and Milan Ruzic. Linear probing with
5-wise independence. SIAM Review, 53(3):547–558, 2011.

[86] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Al-
gorithms, 51(2):122–144, May 2004.

80

DRAFT REFERENCES

[87] Rina Panigrahy. Efficient hashing with lookups in two memory ac-
cesses. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’05, pages 830–839, Philadelphia, PA,
USA, 2005. Society for Industrial and Applied Mathematics.

[88] Mihai Patrascu and Mikkel Thorup. The power of simple tabulation
hashing. J. ACM, 59(3):14, 2012.

[89] Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical balanced al-
locations and the (1 + beta)-choice process. Random Structures and
Algorithms, 2014.

[90] W. W. Peterson. Addressing for random-access storage. IBM J. Res.
Dev., 1(2):130–146, April 1957.

[91] Mihai Pătraşcu and Mikkel Thorup. Twisted tabulation hashing. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’13, pages 209–228, Philadelphia, PA,
USA, 2013. Society for Industrial and Applied Mathematics.

[92] Mihai Pǎtraşcu and Mikkel Thorup. On the k-independence required
by linear probing and minwise independence. ACM Trans. Algorithms,
12(1):8:1–8:27, November 2015.

[93] Martin Raab and Angelika Steger. balls into bins a simple and tight
analysis. In Michael Luby, JosD.P. Rolim, and Maria Serna, editors,
Randomization and Approximation Techniques in Computer Science,
volume 1518 of Lecture Notes in Computer Science, pages 159–170.
Springer Berlin Heidelberg, 1998.

[94] Omer Reingold, Ron D. Rothblum, and Udi Wieder. Pseudorandom
graphs in data structures. In Automata, Languages, and Programming
- 41st International Colloquium, ICALP 2014, Copenhagen, Denmark,
July 8-11, 2014, Proceedings, Part I, pages 943–954, 2014.

[95] A. Wayne Roberts and Dale E. Varberg. Convex Functions. Academic
Press Inc., New York, NY, USA, 1st edition, 1973.

[96] Peter Sanders, Sebastian Egner, and Jan Korst. Fast concurrent ac-
cess to parallel disks. In Proceedings of the Eleventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’00, pages 849–858,
Philadelphia, PA, USA, 2000. Society for Industrial and Applied Math-
ematics.

81

DRAFT REFERENCES

[97] Alan Siegel. On universal classes of extremely random constant-time
hash functions. SIAM J. Comput., 33(3):505–543, 2004.

[98] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. SIGCOMM Comput. Commun. Rev., 31(4):149–
160, August 2001.

[99] Kunal Talwar and Udi Wieder. Balanced allocations: the weighted
case. In Proceedings of the 39th Annual ACM Symposium on Theory
of Computing, San Diego, California, USA, June 11-13, 2007, pages
256–265, 2007.

[100] Kunal Talwar and Udi Wieder. Balanced allocations: A simple proof
for the heavily loaded case. In Javier Esparza, Pierre Fraigniaud,
Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages,
and Programming, volume 8572 of Lecture Notes in Computer Science,
pages 979–990. Springer Berlin Heidelberg, 2014.

[101] Mikkel Thorup. String hashing for linear probing. In Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2009, New York, NY, USA, January 4-6, 2009, pages 655–664,
2009.

[102] Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hash-
ing with applications to linear probing and second moment estimation.
SIAM J. Comput., 41(2):293–331, 2012.

[103] Berthold Vöcking. How asymmetry helps load balancing. J. ACM,
50(4):568–589, July 2003.

[104] Mark N. Wegman and Larry Carter. New hash functions and their use
in authentication and set equality. J. Comput. Syst. Sci., 22(3):265–
279, 1981.

[105] Udi Wieder. Balanced allocations with heterogenous bins. In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, SPAA ’07, pages 188–193, New York, NY,
USA, 2007. ACM.

[106] Philipp Woelfel. Asymmetric balanced allocation with simple hash
functions. In Proceedings of the Seventeenth Annual ACM-SIAM Sym-
posium on Discrete Algorithm, SODA ’06, pages 424–433, Philadel-
phia, PA, USA, 2006. Society for Industrial and Applied Mathematics.

82

	Introduction
	The balls-into-bins model
	The Dictionary Data Structure

	Simple Hashing - the One Choice Scheme
	Multiple Choice Schemes
	The Greedy[d] process
	The Left[d] Process
	A better dictionary

	Notes and Other Generalizations
	Alternative proof techiques
	Related processes

	The Heavily Loaded case
	General Placement Processes
	Back to Greedy[d]
	The Left[d] Scheme
	The Weighted Case
	Lower Bounds

	The Power of Majorization
	Greedy[d] with Non-uniform Sampling probability
	The (1+) process
	Graphical Processes

	A Lower Bound
	Adaptive Schemes

	Dictionaries
	Cuckoo Hashing
	Alternative Proof Approaches

	Some Interesting Variations
	Generalized Cuckoo Hashing and k-Orientability
	Space Unitilization
	Insertion Algorithms

	Linear Probing
	Five-wise independent hash functions

	Explicit hash functions

